首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   74篇
  2022年   10篇
  2021年   24篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   12篇
  2016年   25篇
  2015年   41篇
  2014年   41篇
  2013年   70篇
  2012年   80篇
  2011年   59篇
  2010年   31篇
  2009年   32篇
  2008年   48篇
  2007年   55篇
  2006年   35篇
  2005年   31篇
  2004年   39篇
  2003年   36篇
  2002年   35篇
  2001年   16篇
  2000年   16篇
  1999年   19篇
  1998年   10篇
  1997年   9篇
  1996年   8篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   16篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   17篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   12篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有1044条查询结果,搜索用时 31 毫秒
941.
The biosynthesis of the organometallic H cluster of [Fe–Fe] hydrogenase requires three accessory proteins, two of which (HydE and HydG) belong to the radical S-adenosylmethionine enzyme superfamily. The third, HydF, is an Fe–S protein with GTPase activity. The [4Fe–4S] cluster of HydF is bound to the polypeptide chain through only the three, conserved, cysteine residues present in the binding sequence motif CysXHisX(46-53)HisCysXXCys. However, the involvement of the two highly conserved histidines as a fourth ligand for the cluster coordination is controversial. In this study, we set out to characterize further the [4Fe–4S] cluster of HydF using Mössbauer, EPR, hyperfine sublevel correlation (HYSCORE), and resonance Raman spectroscopy in order to investigate the influence of nitrogen ligands on the spectroscopic properties of [4Fe–4S]2+/+ clusters. Our results show that Mössbauer, resonance Raman, and EPR spectroscopy are not able to readily discriminate between the imidazole-coordinated [4Fe–4S] cluster and the non-imidazole-bound [4Fe–4S] cluster with an exchangeable fourth ligand that is present in wild-type HydF. HYSCORE spectroscopy, on the other hand, detects the presence of an imidazole/histidine ligand on the cluster on the basis of the appearance of a specific spectral pattern in the strongly coupled region, with a coupling constant of approximately 6 MHz. We also discovered that a His-tagged version of HydF, with a hexahistidine tag at the N-terminus, has a [4Fe–4S] cluster coordinated by one histidine from the tag. This observation strongly indicates that care has to be taken in the analysis of data obtained on tagged forms of metalloproteins.  相似文献   
942.
Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts– the most common craniofacial birth defects in humans– are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10−8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10−6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.  相似文献   
943.
High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety‐six of these alignment positions correspond to conserved Gly residue with (φ, ψ) values allowed for non‐glycyl residues. Reasons for this observation were investigated by in‐silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the Cβ atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (φ, ψ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (φ, ψ) values which are disallowed for Ala. In‐silico mutation of these Gly residues to Ala almost always results in steric hindrance involving Cβ atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins.  相似文献   
944.
Glucose uptake by peripheral tissues such as skeletal muscles and adipocytes is important in the maintenance of glucose homeostasis. We previously demonstrated that P2Y6 receptor (P2Y6R) agonists protect pancreatic islet cells from apoptosis and stimulate glucose-dependent insulin release. Here, we investigated the effects of P2Y6R activation on glucose uptake in insulin target tissues. An agonist of the P2Y6R, P1-(5′-uridine)-P3-(5′-N4-methoxycytidine)-triphosphate (MRS2957), significantly increased the uptake of [3H]2-deoxyglucose in mouse C2C12 myotubes and 3T3-L1 adipocytes, and this stimulation was significantly decreased by a selective P2Y6R antagonist N,N″-1,4-butanediyl-bis[N′-(3-isothiocyanatophenyl)thiourea] (MRS2578). Pre-incubation with Compound C (an inhibitor of 5′-AMP-activated protein kinase, AMPK), or AMPK siRNA abolished the stimulatory effect of MRS2957 on glucose uptake. Also, MRS2957 (60 min incubation) increased recruitment of the facilitated glucose transporter-4 (GLUT4) to the cell membrane, which was blocked by MRS2578. Treatment of C2C12 myotubes with MRS2957 induced significant phosphorylation of AMPK, which increase GLUT4 expression through histone deacetylase (HDAC)5 signaling. Glucose uptake in primary mouse adipocytes from wild-type mice was stimulated upon P2Y6R activation by either MRS2957 or native agonist UDP, and the P2Y6R effect was antagonized by MRS2578. However, in adipocytes from P2Y6R-knockout mice P2Y6R agonists had no effect on glucose uptake, and there was no change in the glucose uptake by insulin. Our results indicate that the P2Y6R promotes glucose metabolism in peripheral tissues, which may be mediated through AMPK signaling.  相似文献   
945.
The advances of high-throughput sequencing offer an unprecedented opportunity to study genetic variation. This is challenged by the difficulty of resolving variant calls in repetitive DNA regions. We present a Bayesian method to estimate repeat-length variation from paired-end sequence read data. The method makes variant calls based on deviations in sequence fragment sizes, allowing the analysis of repeats at lengths of relevance to a range of phenotypes. We demonstrate the method’s ability to detect and quantify changes in repeat lengths from short read genomic sequence data across genotypes. We use the method to estimate repeat variation among 12 strains of Arabidopsis thaliana and demonstrate experimentally that our method compares favourably against existing methods. Using this method, we have identified all repeats across the genome, which are likely to be polymorphic. In addition, our predicted polymorphic repeats also included the only known repeat expansion in A. thaliana, suggesting an ability to discover potential unstable repeats.  相似文献   
946.
Heterogenous populations of recombinant cells (cell pools) stably expressing 1–4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model proteins—enhanced green fluorescent protein (EGFP), secreted alkaline phosphatase (SEAP), and a monoclonal IgG1 antibody. Each transgene was present on a separate PB donor plasmid with either the same or a different selection gene. In both cases, we obtained PB‐derived cell pools with higher recombinant protein yields than from cell pools generated by conventional gene delivery. In PB‐derived cell pools generated using a single selection agent, both protein production and the number of integrated copies of each transgene declined as the number of transfected transgenes increased. However, the total number of integrated transgenes was similar regardless of the number of different transgenes transfected. For PB‐derived cell pools generated by selection of each transgene with a different selection agent, the total number of integrated transgenes increased with the number of transfected transgenes. The results suggest that the generation of cell pools producing multiple recombinant proteins is feasible and that the method is more efficient when each individual transgene is selected with a different marker. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1308–1317, 2016  相似文献   
947.
948.
Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (l-alanine-[2,3-epoxycyclohexano-4]-l-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of l-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize l-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to l-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.  相似文献   
949.
Flowering time, a critical adaptive trait, is modulated by several environmental cues. These external signals converge on a small set of genes that in turn mediate the flowering response. Mutant analysis and subsequent molecular studies have revealed that one of these integrator genes, FLOWERING LOCUS T (FT), responds to photoperiod and temperature cues, two environmental parameters that greatly influence flowering time. As the central player in the transition to flowering, the protein coding sequence of FT and its function are highly conserved across species. Using QTL mapping with a new advanced intercross-recombinant inbred line (AI-RIL) population, we show that a QTL tightly linked to FT contributes to natural variation in the flowering response to the combined effects of photoperiod and ambient temperature. Using heterogeneous inbred families (HIF) and introgression lines, we fine map the QTL to a 6.7 kb fragment in the FT promoter. We confirm by quantitative complementation that FT has differential activity in the two parental strains. Further support for FT underlying the QTL comes from a new approach, quantitative knockdown with artificial microRNAs (amiRNAs). Consistent with the causal sequence polymorphism being in the promoter, we find that the QTL affects FT expression. Taken together, these results indicate that allelic variation at pathway integrator genes such as FT can underlie phenotypic variability and that this may be achieved through cis-regulatory changes.MOLECULAR analysis of the phenotypic variation in life history traits is key to understanding how plants evolve in diverse natural environments. Among such traits, flowering time is critical for the reproductive success of the plant and is highly variable among natural Arabidopsis thaliana strains, providing an attractive paradigm for studying adaptive evolution (Johanson et al. 2000; Hagenblad and Nordborg 2002; Stinchcombe et al. 2004; Lempe et al. 2005; Shindo et al. 2005; Werner et al. 2005a). Two major environmental parameters that modulate flowering time are light and temperature (Koornneef et al. 1998). Temperature and light conditions vary substantially within the geographical range of A. thaliana, and natural populations presumably need to adapt to the local environment to ensure reproductive success. Flowering in A. thaliana is generally accelerated by long photoperiods, vernalization (exposure to winter-like conditions), and elevated ambient temperatures (Bäurle and Dean 2006). All these cues favor flowering of A. thaliana during spring or early summer, although the contribution from each individual cue and the interactions among them vary depending on the local environmental conditions (Wilczek et al. 2009).Flowering time is controlled through several genetic cascades that converge on a set of integrator genes including FLOWERING LOCUS T (FT), which encodes a protein that is highly conserved in flowering plants (Kardailsky et al. 1999; Kobayashi et al. 1999; Ahn et al. 2006). FT and its homologs are very likely an integral part of the mobile signal (florigen) that is produced in leaves and travels to the shoot apex to induce flowering (Abe et al. 2005; Wigge et al. 2005; Lifschitz et al. 2006; Corbesier et al. 2007; Jaeger and Wigge 2007; Lin et al. 2007; Mathieu et al. 2007; Tamaki et al. 2007; Notaguchi et al. 2008). In A. thaliana, FT expression is controlled by photoperiod, vernalization, and ambient growth temperature. Photoperiod in conjunction with the circadian clock promotes daily oscillations in FT RNA levels, which are greatly elevated at the end of long days. The central role of FT in determining the timing of flowering appears to be conserved in many species, making FT an attractive target for altering flowering time in cereals and other plants of economic importance (recently reviewed by Kobayashi and Weigel 2007; Turck et al. 2008).Wild strains of A. thaliana show extensive variation in flowering time and much of this is due to variation in the activity of the floral repressor FLOWERING LOCUS C (FLC). While some of this variation maps to FLC itself, much of it is due to differential activity at the epistatically acting FRIGIDA (FRI) locus (Michaels and Amasino 1999; Sheldon et al. 1999; Johanson et al. 2000; Michaels et al. 2003; Lempe et al. 2005; Shindo et al. 2005, 2006). Flowering is typically substantially delayed when the FRI/FLC system is active, unless these plants are first vernalized. However, FRI and FLC do not explain all of the flowering time variation seen in wild strains, and functionally divergent alleles of several additional flowering regulators, including CRYPTOCHROME 2 (CRY2), HUA2, FLOWERING LOCUS M (FLM), PHYTOCHROME C (PHYC), and PHYTOCHROME D (PHYD), have been identified in different strains of A. thaliana (Aukerman et al. 1997; Alonso-Blanco et al. 1998; El-Assal et al. 2001; Werner et al. 2005b; Balasubramanian et al. 2006a; Wang et al. 2007). Finally, there are many genotype-by-environment interactions that dramatically affect the contribution of a specific locus to the overall phenotype.The study of natural variation in A. thaliana has been greatly facilitated through the use of recombinant inbred line (RIL) populations (Koornneef et al. 2004). We have recently established two advanced intercross (AI)-RIL sets, in which the genetic map is greatly expanded, allowing for high-resolution QTL mapping (Balasubramanian et al. 2009). Here we use one of the new AI-RIL populations along with an independent F2 population to identify the molecular basis of a light and temperature-sensitive flowering time QTL that mapped to the promoter of the FT gene. We show that FT is likely the causal gene for variation in light and temperature-sensitive flowering. Our results, in combination with those from other species, suggest that cis-regulatory variation rather than structural variation at FT contributes to phenotypic variation in natural populations.  相似文献   
950.
In various eukaryotes, sterol-rich membrane domains have been proposed to play an important role in polarization and compartmentalization of the plasma membrane. Several studies have reported the cellular distribution of sterols in genetically tractable yeast species and the identification of molecules that might regulate the localization of sterol-rich membrane domains. Here, we attempt to synthesize our understanding of the function and organization of these domains from the study of fungi and identify some outstanding issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号