首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2020年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  1999年   2篇
  1997年   1篇
排序方式: 共有24条查询结果,搜索用时 187 毫秒
11.
Intact yeast cells loaded with 5- and-6-carboxyfluorescein were used to assess water transport. The results were similar to those previously reported for protoplasts assessed by using either fluorescence or light scattering, and the activation energies were 8.0 and 15.1 kcal mol(-1) (33.4 and 63.2 kJ mol(-1)) for a strain overexpressing AQY1 aquaporin and a parental strain, respectively.  相似文献   
12.
The effect of the antiepileptic drug valproic acid (VPA) on mitochondrial oxidative phosphorylation (OXPHOS) was investigated in vitro. Two experimental approaches were used, in the presence of selected respiratory-chain substrates: (1) formation of ATP in digitonin permeabilized rat hepatocytes and (2) measurement of the rate of oxygen consumption by polarography in rat liver mitochondria. VPA (0.1-1.0 mM) was found to inhibit oxygen consumption and ATP synthesis under state 3 conditions with glutamate and 2-oxoglutarate as respiratory substrates. No inhibitory effect on OXPHOS was observed when succinate (plus rotenone) was used as substrate. We tested the hypothesis that dihydrolipoyl dehydrogenase (DLDH) might be a direct target of VPA, especially its acyl-CoA intermediates. Valproyl-CoA (0.5-1.0 mM) and valproyl-dephosphoCoA (0.5-1.0 mM) both inhibited the DLDH activity, acting apparently by different mechanisms. The decreased activity of DLDH induced by VPA metabolites may, at least in part, account for the impaired rate of oxygen consumption and ATP synthesis in mitochondria if 2-oxoglutarate or glutamate were used as respiratory substrates, thus limiting the flux of these substrates through the citric acid cycle.  相似文献   
13.
In plants, the vacuole is a multifunctional organelle with an important role in the maintenance of the intracellular space. Tonoplast membranes are highly permeable to water due to their content in aquaporins TIPs (Tonoplast Intrinsic Proteins) that allow the rapid water influx creating an internal turgor pressure responsible for cell expansion, elongation and shape.  相似文献   
14.
Brush border membrane vesicles (BBMV) maintain an initial hydrostatic pressure difference between the intra- and extravesicular medium, which causes membrane strain and surface area expansion (Soveral, Macey & Moura, 1997). This has not been taken into account in prior osmotic water permeability P f evaluations. In this paper, we find further evidence for the pressure in the variation of stopped-flow light scattering traces with different vesicle preparations. Response to osmotic shock is used to estimate water permeability in BBMV prepared with buffers of different osmolarities (18 and 85 mosM). Data analysis includes the dissipation of both osmotic and hydrostatic pressure gradients. P f values were of the order of 4 × 10−3 cm sec−1 independent of the osmolarity of the preparation buffer. Arrhenius plots of P f vs. 1/T were linear, showing a single activation energy of 4.6 kcal mol−1. The initial osmotic response which is significantly retarded is correlated with the period of elevated hydrostatic pressure. We interpret this as an inhibition of P f caused by membrane strain and suggest how this inhibition may play a role in cell volume regulation in the proximal tubule. Received: 8 August 1996/Revised: 4 March 1997  相似文献   
15.
Intact yeast cells loaded with 5- and-6-carboxyfluorescein were used to assess water transport. The results were similar to those previously reported for protoplasts assessed by using either fluorescence or light scattering, and the activation energies were 8.0 and 15.1 kcal mol−1 (33.4 and 63.2 kJ mol−1) for a strain overexpressing AQY1 aquaporin and a parental strain, respectively.  相似文献   
16.
17.
18.
Evidence that membrane surface tension regulates water fluxes in intact cells of a Saccharomyces cerevisiae strain overexpressing aquaporin AQY1 was obtained by assessing the osmotic water transport parameters in cells equilibrated in different osmolarities. The osmotic water permeability coefficients (Pf) obtained for yeast cells overexpressing AQY1 incubated in low osmolarity buffers were similar to those obtained for a double mutant aqy1aqy2 and approximately three times lower (with higher activation energy, Ea) than values obtained for cells incubated in higher osmolarities (with lower Ea). Moreover, the initial inner volumes attained a maximum value for cells equilibrated in lower osmolarities (below 0.75 M) suggesting a pre-swollen state with the membrane under tension, independent of aquaporin expression. In this situation, the impairment of water channel activity suggested by lower Pf and higher Ea could probably be the first available volume regulatory tool that, in cooperation with other osmosensitive solute transporters, aims to maintain cell volume. The results presented point to the regulation of yeast water channels by membrane tension, as previously described in other cell systems.  相似文献   
19.
20.
In yeast, the presence of orthodox aquaporins has been first recognized in Saccharomyces cerevisiae, in which two genes (AQY1 and AQY2) were shown to be related to mammal and plant water channels. The present review summarizes the putative orthodox aquaporin protein sequences found in available genomes of yeast and filamentous fungi. Among the 28 yeast genomes sequenced, most species present only one orthodox aquaporin, and no aquaporins were found in eight yeast species. Alignment of amino acid sequences reveals a very diverse group. Similarity values vary from 99% among species within the Saccharomyces genus to 34% between ScAqy1 and the aquaporin from Debaryomyces hansenii. All of the fungal aquaporins possess the known characteristic sequences, and residues involved in the water channel pore are highly conserved. Advances in the establishment of the structure are reviewed in relation to the mechanisms of selectivity, conductance and gating. In particular, the involvement of the protein cytosolic N-terminus as a channel blocker preventing water flow is addressed. Methodologies used in the evaluation of aquaporin activity frequently involve the measurement of fast volume changes. Particular attention is paid to data analysis to obtain accurate membrane water permeability parameters. Although the presence of aquaporins clearly enhances membrane water permeability, the relevance of these ubiquitous water channels in yeast performance remains obscure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号