首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   10篇
  2023年   4篇
  2022年   4篇
  2021年   12篇
  2020年   7篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2016年   4篇
  2015年   12篇
  2014年   14篇
  2013年   16篇
  2012年   17篇
  2011年   18篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
41.
Schnell S  Fortunato S  Roy S 《Proteomics》2007,7(6):961-964
In protein-protein interaction (PPI) networks certain topological properties appear to be recurrent: network maps are considered scale-free. It is possible that this topology is reflected in the protein structure. In this paper, we investigate the role of protein disorder in the network topology. We find that the disorder of a protein (or of its neighbors) is independent of its number of PPIs. This result suggests that protein disorder does not play a role in the scale-free architecture of protein networks.  相似文献   
42.
Infections due to protozoa of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The aim of this study was to evaluate the in vitro antileishmanial activity of the acetone and methanol leaf extracts of Anisomeles malabarica, flower of Gloriosa superba, leaf of Ocimum basilicum, leaf and seed of Ricinus communis against promastigotes form of Leishmania donovani. Antiparasitic evaluations of different plant crude extracts were performed on 96 well plates at 37°C for 24-48h. Out of the 10 experimental plant extracts tested, the leaf methanol extracts of A. malabarica, and R. communis showed good antileishmanial activity (IC(50)=126±19.70 and 184±39.33μg/mL), respectively against promastigotes. Effective antileishmanial activity was observed making these plants as good candidates for isolation of antiprotozoal compounds which could serve as new lead structures for drug development.  相似文献   
43.
44.
The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19 nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.  相似文献   
45.
The thermostability of hyperthermophile proteins is not easily studied because such proteins tend to be extremely recalcitrant to unfolding. Weeks of exposure to structurally destabilizing conditions are generally required to elicit any evidence of conformational change(s). The main reason for this extreme kinetic stability would appear to be the dominance of local unfolding transitions that occur within different parts of the structures of these molecules; put differently, local sub structural unfolding transitions that occur autonomously and reversibly are thought to fail to cooperate to bring about global unfolding in a facile manner, leading to a low overall observed rate of unfolding. For reasons that are not yet fully understood, unfolding is also reported to occur irreversibly in hyperthermophile proteins. Therefore, conventional experimental approaches are often unsuited to the study of their unfolding. Here, we describe a novel electrophoretic approach that facilitates separation, direct visualization, and quantitation of the folded, partially folded, and unfolded forms of the hyperthermophile protein triosephosphate isomerase from Pyrococcus furiosus, produced in the course of its irreversible structural destabilization by the combined action of heat and chemical agents. Our approach exploits (i) the irreversibility of global unfolding effected by heat and denaturants such as urea or guanidine hydrochloride, (ii) the stability of the native form of the protein to unfolding by the anionic detergent sodium dodecyl sulfate, (iii) the differential susceptibilities of various protein conformations to being bound by SDS, and (iv) the differential electrophoretic migration behavior displayed as a consequence of differential SDS binding.  相似文献   
46.
Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.  相似文献   
47.
A new computational model capable of understanding the nature of interactions in signature complexes formed between the template (2,3,7,8‐tetrachlorodibenzo‐p dioxin (TCDD)) and the functional monomers (methacrylic acid (MAA)) using density functional theory (DFT) has been designed. The polymer precursors were optimized for geometries in polymerization media, computing the interaction energies between template molecules and functional monomers of transient pre‐polymerized complexes (PPC), and structural and vibrational properties reference to theoretical infrared spectra were computed using DFT of B3LYP/6 311+G(d,p) hybrid functional method. Atom in molecule theory was used to analyze the hydrogen‐bonding characteristics of PPC of MAA–TCDD. Considering the theoretical titrations conducted in a virtual solvent box, it was found that the 1:4 molar ratio was required to form the most stable PPC in a given solvent system. The electron density plots indicate strong hydrogen bonding as shown by the 2pz dominant highest occupied molecular orbital (HOMO) character that could be the preferable sites of binding for target molecule, TCDD. Considering HOMO approach, the active adsorption sites in molecularly imprinted polymer was modeled to get insight on molecular recognition property for targeted molecule, TCDD. The proposed computational protocol is simple, accurate, and novel to design the polymer and is useful to predict the properties of polymer systems than the conventional theoretical analysis of template–monomer interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
48.
Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore.  相似文献   
49.
50.
Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full‐length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain–domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild‐type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full‐length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an “extended” catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号