首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   92篇
  1267篇
  2023年   6篇
  2022年   26篇
  2021年   36篇
  2020年   18篇
  2019年   26篇
  2018年   20篇
  2017年   18篇
  2016年   39篇
  2015年   55篇
  2014年   74篇
  2013年   71篇
  2012年   75篇
  2011年   101篇
  2010年   52篇
  2009年   41篇
  2008年   59篇
  2007年   42篇
  2006年   34篇
  2005年   36篇
  2004年   31篇
  2003年   27篇
  2002年   20篇
  2001年   26篇
  2000年   24篇
  1999年   17篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   21篇
  1989年   18篇
  1988年   13篇
  1987年   14篇
  1986年   12篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1979年   10篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1973年   11篇
  1971年   6篇
  1970年   6篇
  1969年   8篇
  1965年   5篇
排序方式: 共有1267条查询结果,搜索用时 15 毫秒
121.
In presence of the glycosylation inhibitors, 2-deoxy-d-glucose (1 mg/ml), tunicamycin (30 μg/ml), 1-deoxynojirimycin (30 μg/ml) and d-glucono-δ-lactone (1 mg/ml), total cellobiase activity, in the extracellular, intracellular and cell bound fractions, of the fungus Termitomyces clypeatus grown in 20 ml cellobiose medium (1%, w/v) increased by 50-, 1.8-, 2.4-, 1.3-fold, respectively, with respect to control medium (16.3 U). The inhibitors also stimulated secretion of 95% of the total protein in culture medium, except d-glucono-δ-lactone which released 60% of the total protein. 2-Deoxy-d-glucose (1 mg/ml) led to production of extracellular cellobiase up to 40 U/ml, whereas in absence of the inhibitors only 0.59 U/ml enzyme was detected.  相似文献   
122.
We have examined the underlying mechanism of hepatitis C virus (HCV)-mediated IFITM1 regulation. IFITM1 is a potential target of miR-130a. Our results demonstrated that miR-130a expression was significantly higher in HCV-infected hepatocytes and liver biopsy specimens than in controls. Introduction of anti-miR-130a in hepatocytes increased IFITM1 expression. Hepatocytes stably expressing IFITM1 reduced HCV replication. Together, these results suggested that HCV infection of hepatocytes upregulates miR-130a and that use of anti-miR-130a may have potential for restriction of HCV replication.  相似文献   
123.
We studied two pathways that involve the transfer of persulfide sulfur in humans, molybdenum cofactor biosynthesis and tRNA thiolation. Investigations using human cells showed that the two-domain protein MOCS3 is shared between both pathways. MOCS3 has an N-terminal adenylation domain and a C-terminal rhodanese-like domain. We showed that MOCS3 activates both MOCS2A and URM1 by adenylation and a subsequent sulfur transfer step for the formation of the thiocarboxylate group at the C terminus of each protein. MOCS2A and URM1 are β-grasp fold proteins that contain a highly conserved C-terminal double glycine motif. The role of the terminal glycine of MOCS2A and URM1 was examined for the interaction and the cellular localization with MOCS3. Deletion of the C-terminal glycine of either MOCS2A or URM1 resulted in a loss of interaction with MOCS3. Enhanced cyan fluorescent protein and enhanced yellow fluorescent protein fusions of the proteins were constructed, and the fluorescence resonance energy transfer efficiency was determined by the decrease in the donor lifetime. The cellular localization results showed that extension of the C terminus with an additional glycine of MOCS2A and URM1 altered the localization of MOCS3 from the cytosol to the nucleus.  相似文献   
124.
Two different series of naphthalene and anthracene based hydroxamic acids having amino acid derivatives were synthesized. Single strand DNA cleavage was achieved on irradiation of newly synthesized hydroxamic acids by UV light (≥350nm). Both reactive oxygen species (ROS) and generated radicals from hydroxamic acids were shown to be responsible for the DNA cleavage. Further, DNA cleaving ability of hydroxamic acids was found to be dependent on its concentration and on its structure.  相似文献   
125.
126.
Exchange proteins directly activated by cAMP (EPACs) are guanine nucleotide-exchange factors for the small GTPases Rap1 and Rap2 and represent a key receptor for the ubiquitous cAMP second messenger in eukaryotes. The cAMP-dependent activation of apoEPAC is typically rationalized in terms of a preexisting equilibrium between inactive and active states. Structural and mutagenesis analyses have shown that one of the critical determinants of the EPAC activation equilibrium is a cluster of salt bridges formed between the catalytic core and helices alpha1 and alpha2 at the N terminus of the cAMP binding domain and commonly referred to as ionic latch (IL). The IL stabilizes the inactive states in a closed topology in which access to the catalytic domain is sterically occluded by the regulatory moiety. However, it is currently not fully understood how the IL is allosterically controlled by cAMP. Chemical shift mapping studies consistently indicate that cAMP does not significantly perturb the structure of the IL spanning sites within the regulatory region, pointing to cAMP-dependent dynamic modulations as a key allosteric carrier of the cAMP-signal to the IL sites. Here, we have therefore investigated the dynamic profiles of the EPAC1 cAMP binding domain in its apo, cAMP-bound, and Rp-cAMPS phosphorothioate antagonist-bound forms using several 15N relaxation experiments. Based on the comparative analysis of dynamics in these three states, we have proposed a model of EPAC activation that incorporates the dynamic features allosterically modulated by cAMP and shows that cAMP binding weakens the IL by increasing its entropic penalty due to dynamic enhancements.  相似文献   
127.
Amino acid sequences of nucleocapsid proteins are mostly conserved among different rhabdoviruses. The protein plays a common functional role in different RNA viruses by enwrapping the viral genomic RNA in an RNase-resistant form. Upon expression of the nucleocapsid protein alone in COS cells and in bacteria, it forms large insoluble aggregates. In this work, we have reported for the first time the full-length cloning of the N gene of Chandipura virus and its expression in Escherichia coli in a soluble monomeric form and purification using nonionic detergents. The biological activity of the soluble recombinant protein has been tested, and it was found to possess efficient RNA-binding ability. The state of aggregation of the recombinant protein was monitored using light scattering. In the absence of nonionic detergents, it formed large aggregates. Aggregation was significantly reduced in the presence of osmolytes such as d-sorbitol. Aggregate formation was suppressed in the presence of another viral product, phosphoprotein P, in a chaperone-like manner. Both the osmolyte and phosphoprotein P also suppressed aggregation to a great extent during refolding from a guanidine hydrochloride-denatured form. The function of the phosphoprotein and osmolyte appears to be synergistic to keep the N-protein in a soluble biologically competent form in virus-infected cells.  相似文献   
128.
129.
ABSTRACT

The autonomic nervous system (ANS) is one of the effector pathways for circadian variation of many physiological parameters. Autonomic tone and airways caliber have been reported to exhibit circadian variation in separate studies. A simultaneous investigation of heart rate variability (HRV) and airway caliber might ascertain how airway caliber is modulated by autonomic tone. This study was planned to identify the variations in airway caliber and autonomic function tone during a 24-hour span. A total of 56 healthy male subjects with almost similar daily routines were studied. Time domain, frequency domain and nonlinear analysis of R-R interval from 5 min electrocardiogram (ECG) was done seven times during the daytime wake span at 3-hour intervals starting at 05:00 h in the morning until 23:00 h in the night. Simultaneously peak expiratory flow rate (PEFR) was determined using a mini Wright’s peak flow meter. Rhythmometric analysis was done for PEFR and HRV parameters. Significant circadian variation in low frequency (LF) and high frequency (HF) variance was identified in this group of healthy subjects. The circadian rhythm of LF variance was characterized by a gradual increase and corresponding reciprocal change in HF variance from morning until night. The LF/HF ratio and SD2/SD1 ratio reflecting sympatho-vagal balance showed low to high values from morning to evening. The acrophase of the PEFR temporal pattern is similar to that of LF power and almost opposite in phase to that of HF power. PEFR is positively correlated with LF power. The circadian rhythm of airway caliber co-varies with cardiac autonomic tone. It appears that the temporal pattern of cardiac autonomic tone precedes in time that of airways caliber, thereby suggesting the latter operates under the modulatory effect of the 24-hour pattern in sympatho-vagal balance.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号