首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   89篇
  2022年   5篇
  2021年   10篇
  2020年   6篇
  2019年   12篇
  2018年   14篇
  2017年   11篇
  2016年   37篇
  2015年   42篇
  2014年   50篇
  2013年   78篇
  2012年   47篇
  2011年   59篇
  2010年   35篇
  2009年   30篇
  2008年   73篇
  2007年   75篇
  2006年   61篇
  2005年   58篇
  2004年   62篇
  2003年   66篇
  2002年   69篇
  2001年   52篇
  2000年   53篇
  1999年   56篇
  1998年   27篇
  1997年   29篇
  1996年   18篇
  1995年   32篇
  1994年   17篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   28篇
  1989年   33篇
  1988年   17篇
  1987年   18篇
  1986年   24篇
  1985年   25篇
  1984年   27篇
  1983年   15篇
  1982年   13篇
  1981年   9篇
  1980年   14篇
  1979年   19篇
  1978年   11篇
  1977年   11篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
  1973年   16篇
排序方式: 共有1603条查询结果,搜索用时 265 毫秒
991.
Proteolytically cleaved human 22 kDa growth hormone (22K hGH) between the amino acid residues 134 and 150 by plasmin or other proteases in vitro has been reported to be most active in growth promoting activity. In this study a deleted mutant hGH lacking amino acid residues from 135 to 146 and having more sensitivity to plasmin digestion was produced using the inverse polymerase chain reaction method and the Escherichia coli expression system. The mutant, hGH delta 135-146, was folded and purified effectively and found to be more sensitive to plasmin cleavage to form the two-chain form in vitro. The biological activities of this plasmin sensitive hGH delta 135-146 were tested by in vitro cell proliferation assays and in vivo growth promoting assay. In Ba/F3-hGHR cells, which express receptors for hGH, hGH delta 135-146 showed 10-20% less growth promoting activity than 22K hGH, but expressed comparable quantities of IGF-I mRNA to that of 22K hGH. In Nb2 rat lymphoma cells, which proliferate in response to hGH via the lactogenic receptors, hGH delta 135-146 showed equivalent activities to those of 22K hGH at lower concentrations. By the body weight gain test using hypophysectomized rats, a lower dose (2.5 nmol kg-1) of hGH delta 135-146 exhibited an equivalent activity to that of wild type 22K hGH, but a higher dose (25 nmol kg-1) of the mutant showed less growth promoting activity than 22K hGH. These results indicated that the plasmin sensitive recombinant hGH delta 135-146 failed to show higher biological activity than the 22K hGH in vivo, suggesting the unsuccessful formation of the active two-chain form in vivo.  相似文献   
992.
The c-RET proto-oncogene encodes a receptor-type tyrosine kinase, and its mutations in the germ line are responsible for the inheritance of multiple endocrine neoplasia type 2A (MEN2A) and 2B (MEN2B). Ret kinases are constitutively activated as a result of MEN2A mutations (Ret-MEN2A) or MEN2B mutations (Ret-MEN2B). Here we demonstrate that UV light (UV) irradiation induces superactivation of the constitutively activated Ret-MEN2A and Ret-MEN2B as well as activation of c-Ret. Before UV irradiation, small percentages of c-Ret (3–4%) and Ret-MEN2B (1–2%) and large percentages of Ret-MEN2A (30–40%) were dimerized through disulfide bonds. These dimerized Ret proteins were preferentially autophosphorylated, suggesting a close relation between up-regulated kinase activity and disulfide bond–mediated dimerization of Ret proteins. We found that UV irradiation promotes the disulfide bond–mediated dimerization of the Ret proteins, in close association with activation and superactivation of Ret kinases. UV irradiation also induced dimerization and activation of the extracellular domain–deleted mutant Ret (Ret-PTC-1). Interestingly, the levels of basic kinase activity and dimerization of Ret-PTC-1–C376A, in which cysteine 376 in the tyrosine kinase domain of Ret-PTC-1 was replaced by alanine, were low and were not increased by UV irradiation. These results suggest that Ret-PTC-1 cysteine 376 is one of possibly multiple critical target amino acids of UV for Ret kinase activation. Overexpression of Cu/Zn superoxide dismutase in cells as a result of gene transfection prevented both the UV-mediated promotion of dimerization and the superactivation of Ret-MEN2A kinase. These results suggest that the UV-induced free radicals in cells attack intracellular domains of Ret to dimerize the kinase proteins for superactivation.  相似文献   
993.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells.  相似文献   
994.
Adult multipotent neural progenitor cells can differentiate into neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system, but the molecular mechanisms that control their differentiation are not yet well understood. Insulin-like growth factor I (IGF-I) can promote the differentiation of cells already committed to an oligodendroglial lineage during development. However, it is unclear whether IGF-I affects multipotent neural progenitor cells. Here, we show that IGF-I stimulates the differentiation of multipotent adult rat hippocampus-derived neural progenitor cells into oligodendrocytes. Modeling analysis indicates that the actions of IGF-I are instructive. Oligodendrocyte differentiation by IGF-I appears to be mediated through an inhibition of bone morphogenetic protein signaling. Furthermore, overexpression of IGF-I in the hippocampus leads to an increase in oligodendrocyte markers. These data demonstrate the existence of a single molecule, IGF-I, that can influence the fate choice of multipotent adult neural progenitor cells to an oligodendroglial lineage.  相似文献   
995.
Localization of an extracellular matrix protein, Th-nectin, in the eggs and embryos of the sea urchin Temnopleurus hardwickii was examined by both immunofluorescence and immunoelectron microscopy. The protein is associated with a tubular structure packaged in rod-shaped vesicles that were designated as 'nectosomes'. In unfertilized eggs, nectosomes are distributed uniformly throughout the cytoplasm, but after fertilization, they gradually translocate to the cortical zone where they are arranged perpendicular to the plasma membrane. The migration of the nectosomes was strongly inhibited by cytochalasin B, which suggested that microfilaments play an important role in this process. Immunocytochemical and immunoblotting analyses both ascertained that nectin is secreted into the hyaline layer. Some nectosomes remain in the apical cytoplasm of dermal cells until the gastrula stage. Ultrastructural examination revealed that the accumulation of nectosomes in the oocyte cytoplasm begins quite early in oogenesis, concomitant with the accumulation of cortical vesicles.  相似文献   
996.
The purpose of this study was to elucidate the mechanisms of blood-to-retina creatine transport across the blood-retinal barrier (BRB) in vivo and in vitro, and to identify the responsible transporter(s). The creatine transport across the BRB in vivo and creatine uptake in an in vitro model of the inner BRB (TR-iBRB2 cells) were examined using [(14)C]creatine. Identification and localization of the creatine transporter (CRT) were carried out by RT-PCR, western blot, and immunoperoxidase electron microscopic analyses. An in vivo intravenous administration study suggested that [(14)C]creatine is transported from the blood to the retina against the creatine concentration gradient that exists between the retina and blood. [(14)C]Creatine uptake by TR-iBRB2 cells was saturable, Na(+)- and Cl(-)-dependent and inhibited by CRT inhibitors, suggesting that CRT is involved in creatine transport at the inner BRB. RT-PCR and western blot analyses demonstrated that CRT is expressed in rat retina and TR-iBRB2 cells. Moreover, using an immunoperoxidase electron microscopic analysis, CRT immunoreactivity was found at both the luminal and abluminal membranes of the rat retinal capillary endothelial cells. In conclusion, CRT is expressed at the inner BRB and plays a role in blood-to-retina creatine transport across the inner BRB.  相似文献   
997.
Although tight-junctions (TJs) at the blood-brain barrier (BBB) are important to prevent non-specific entry of compounds into the CNS, molecular mechanisms regulating TJ maintenance remain still unclear. The purpose of this study was therefore to identify molecules, which regulate occludin expression, derived from astrocytes and pericytes that ensheathe brain microvessels by using conditionally immortalized adult rat brain capillary endothelial (TR-BBB13), type II astrocyte (TR-AST4) and brain pericyte (TR-PCT1) cell lines. Transfilter co-culture with TR-AST4 cells, and exposure to conditioned medium of TR-AST4 cells (AST-CM) or TR-PCT1 cells (PCT-CM) increased occludin mRNA in TR-BBB13 cells. PCT-CM-induced occludin up-regulation was significantly inhibited by an angiopoietin-1-neutralizing antibody, whereas the up-regulation by AST-CM was not. Immunoprecipitation and western blot analyses confirmed that multimeric angiopoietin-1 is secreted from TR-PCT1 cells, and induces occludin mRNA, acting through tyrosine phosphorylation of Tie-2 in TR-BBB13 cells. A fractionated AST-CM study revealed that factors in the molecular weight range of 30-100 kDa led to occludin induction. Conversely, occludin mRNA was reduced by transforming growth factor beta 1, the mRNA of which was up-regulated in TR-AST4 cells following hypoxic treatment. In conclusion, in vitro BBB model studies revealed that the pericyte-derived multimeric angiopoietin-1/Tie-2 pathway induces occludin expression.  相似文献   
998.
999.
RRAG A (Rag A)/Gtr1p is a member of the Ras-like small G protein family that genetically interacts with RCC1, a guanine nucleotide exchange factor for RanGTPase. RRAG A/Gtr1p forms a heterodimer with other G proteins, RRAG C and RRAG D/Gtr2p, in a nucleotide-independent manner. To further elucidate the function of RRAG A/Gtr1p, we isolated a protein that interacts with RRAG A. This protein is a novel nucleolar protein, Nop132. Nop132 is associated with the GTP form, but not the GDP form, of RRAG A, suggesting that RRAG A might regulate Nop132 function. Nop132 is also associated with RRAG C and RRAG D. The Nop132 amino acid sequence is similar to the Saccharomyces cerevisiae nucleolar Nop8p, which is associated with Gtr1p, Gtr2p, and Nip7p. Nop132 also interacts with human Nip7 and is colocalized with RRAG A, RRAG C, and Nip7. RNA interference knockdown of Nop132 inhibited cell growth of HeLa cells.  相似文献   
1000.
Shwachman-Diamond syndrome (SDS; OMIM 260400) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency, bone marrow dysfunction and metaphyseal chondrodysplasia. SDS is caused by mutations in SBDS, an uncharacterized gene. A previous study in SDS patients largely of European ancestry found that most SBDS mutations occurred within a ~240-bp region of exon 2 and resulted from gene conversion due to recombination with a pseudogene, SBDSP. It is unknown, however, whether these findings are applicable to other ethnic groups. To address this question, we examined SBDS mutations in six Japanese families with SDS by direct sequencing. We identified compound heterozygous mutations in four families: two were recurrent (96–97insA, 258+2T>C), and three were novel [292–295delAAAG, (183–184TA>CT +201A>G), (141C>T+183–184TA>CT+201A>G)] mutations. Most of these mutations also appear to result from gene conversion, but the conversion events occurred at various sites between intron 1 and exon 3. Thus, gene conversion mutations in SBDS are common to different ethnic groups, but they are not confined to a limited region of the gene.Y. Makita, M. Masuno, H. Ohashi, G. Nishimura, S. Ikegawa are members of the Japanese Skeletal Dysplasia Consortium  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号