首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   21篇
  2023年   1篇
  2022年   11篇
  2021年   18篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   18篇
  2015年   27篇
  2014年   17篇
  2013年   28篇
  2012年   35篇
  2011年   45篇
  2010年   21篇
  2009年   20篇
  2008年   15篇
  2007年   38篇
  2006年   22篇
  2005年   31篇
  2004年   18篇
  2003年   22篇
  2002年   13篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1981年   2篇
  1967年   1篇
排序方式: 共有456条查询结果,搜索用时 515 毫秒
331.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.  相似文献   
332.

A new basal culture medium was developed and tested using a rapid and efficient protocol of in vitro axillary shoot bud proliferation of Ceratonia siliqua L., an important Mediterranean Fabaceae plant species. In a first experiment, the new formulated ‘LA’ mineral composition significantly improved shoot growth and proliferation as compared with Murashige and Skoog medium (MS, 1962) in both solid and liquid culture media. However, the liquid culture system proved to be the most suitable for shoot induction, shoot length (about fourfold higher), and multiplication rate (about two-fold higher), the difference being significant. The measured growth and proliferation parameters were further improved when LA mineral composition was optimized, in a second experiment. The highest multiplication rate (6.3) was achieved during the second subculture using the optimized ‘LAC’ medium. Noticeably, hyperhydricity and shoot-tip necrosis symptoms were absent in both formulated LA and LAC compositions when using the liquid culture system. In vitro rooting in solid medium showed 41.7 to 46.3% response on a solid medium which was more suitable than the liquid culture system, the difference being significant. In contrast, pretreated microcuttings with 3 μM IBA (indole-3-butyric acid) were successfully rooted ex vitro, showing significantly higher response (91.7%), average root number (8.3), and root length (31.5 mm). The plantlets were successfully acclimatized showing more than 90% survivability and normal morphology. The present study is a first cost-effective protocol for carob micropropagation combining the use of the newly formulated LAC basal medium, a liquid culture system, and ex vitro rooting.

  相似文献   
333.
334.
MingCheng Luo  Kavitha Madishetty  Jan T. Svensson  Matthew J. Moscou  Steve Wanamaker  Tao Jiang  Andris Kleinhofs  Gary J. Muehlbauer  Roger P. Wise  Nils Stein  Yaqin Ma  Edmundo Rodriguez  Dave Kudrna  Prasanna R. Bhat  Shiaoman Chao  Pascal Condamine  Shane Heinen  Josh Resnik  Rod Wing  Heather N. Witt  Matthew Alpert  Marco Beccuti  Serdar Bozdag  Francesca Cordero  Hamid Mirebrahim  Rachid Ounit  Yonghui Wu  Frank You  Jie Zheng  Hana Simková  Jaroslav Dolezel  Jane Grimwood  Jeremy Schmutz  Denisa Duma  Lothar Altschmied  Tom Blake  Phil Bregitzer  Laurel Cooper  Muharrem Dilbirligi  Anders Falk  Leila Feiz  Andreas Graner  Perry Gustafson  Patrick M. Hayes  Peggy Lemaux  Jafar Mammadov  Timothy J. Close 《The Plant journal : for cell and molecular biology》2015,84(1):216-227
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.  相似文献   
335.
Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorganisms and directed against the backbone and the side chains of plant cell wall polysaccharides. Among side chains degrading enzymes, the feruloyl esterase A (FAEA) specifically removes feruloyl residues. Thus, FAEA has potential applications in a wide range of industrial processes such as paper bleaching or bio-ethanol production. To gain insight into FAEA hydrolysis activity, we solved its crystal structure. In this paper, we report how the use of four consecutive factorial approaches (two incomplete factorials, one sparse matrix, and one full factorial) allowed expressing in Escherichia coli, refolding and then crystallizing Aspergillus niger FAEA in 6 weeks. Culture conditions providing the highest expression level were determined using an incomplete factorial approach made of 12 combinations of four E. coli strains, three culture media and three temperatures (full factorial: 36 combinations). Aspergillus niger FAEA was expressed in the form of inclusion bodies. These were dissolved using a chaotropic agent, and the protein was purified by affinity chromatography on Ni column under denaturing conditions. A suitable buffer for refolding the protein eluted from the Ni column was found using a second incomplete factorial approach made of 96 buffers (full factorial: 3840 combinations). After refolding, the enzyme was further purified by gel filtration, and then crystallized following a standard protocol: initial crystallization conditions were found using commercial crystallization screens based on a sparse matrix. Crystals were then optimized using a full factorial screen.  相似文献   
336.
MOTIVATION: Biologists usually work with textual DNA sequences (succession of A, C, G and T). This representation allows biologists to study the syntax and other linguistic properties of DNA sequences. Nevertheless, such a linear coding offers only a local and a one-dimensional vision of the molecule. The 3D structure of DNA is known to be very important in many essential biological mechanisms. By using 3D conformation models, one is able to construct a 3D trajectory of a naked DNA molecule. From the various studies that we performed, it turned out that two very different textual DNA sequences could have similar 3D structures. RESULTS: In this article, we address a new research work on 3D pattern matching for DNA sequences. The aim of this work is to enhance conventional pattern matching analyses with 3D-augmented criteria. We have developed an algorithm, based on 3D trajectories, which compares angles formed by these trajectories and thus quantifies the difference between two 3D DNA sequences. This analysis performs from a global scale to al local one. AVAILABILITY: Available on request from the authors.  相似文献   
337.
The struggle against the harmful bugs of culture is intensified, and several products are appeared every year without the knowledge how to control their effects on environment and especially on being life. The introduced chemical products in nature are generally, the synthesis products witch are the pesticides. Our study consist the impact mechanism of a pesticides (FCX) on other biological model than harmful bugs, this biological model is a vertebrate model witch is the domestic chicken eggs (Gaollus domesticus). The toxicity of Flucycloxuron reviewed across the eggs weight kinetic accompanied with embryonic hematological parameters, in ovo and after hatching. The tested concentrations of pesticide are 1, 10 and 20 microg/egg injected at first day of incubation. Eggs treatment by three concentrations of pesticides, disturbs the studied parameters, where we observe that the pesticide inhibit the nutriment transformation, translated by eggs decreased weight kinetic according to the control, also the FCX affect the shell weight and cause the alteration of shell integrity. Hematological parameters show a clear impact of the pesticide at the lowest concentration (1 microg/egg). The obtained results confirm that the chosen biological model is good bio-indicator for eventual pollution and they are not far from pesticides toxicity.  相似文献   
338.
Presence of cytosolic protein aggregates and membrane damage are two common attributes of neurodegenerative diseases. These aggregates delay degradation of non‐translocated protein precursors leading to their persistence and accumulation in the cytosol. Here, we find that cells with intracellular protein aggregates (of cytosolic prion protein or huntingtin) destabilize the endoplasmic reticulum (ER) morphology and dynamics when non‐translocated protein load is high. This affects trafficking of proteins out from the ER, relative distribution of the rough and smooth ER and three‐way junctions that are essential for the structural integrity of the membrane network. The changes in ER membranes may be due to high aggregation tendency of the ER structural proteins—reticulons, and altered distribution of those associated with the three‐way ER junctions—Lunapark. Reticulon4 is seen to be enriched in the aggregate fractions in presence of non‐translocated protein precursors. This could be mitigated by improving signal sequence efficiencies of the proteins targeted to the ER. These were observed using PrP variants and the seven‐pass transmembrane protein (CRFR1) with different signal sequences that led to diverse translocation efficiencies. This identifies a previously unappreciated consequence of cytosolic aggregates on non‐translocated precursor proteins—their persistent presence affects ER morphology and dynamics. This may be one of the ways in which cytosolic aggregates can affect endomembranes during neurodegenerative disease.  相似文献   
339.

DGGE analysis combined with a metagenomic approach was used to get insights into heterotrophic anoxic enrichment cultures of four hot springs of Vale das Furnas, Portugal, using the recalcitrant substrate spent coffee ground (SCG). Parallel enrichment cultures were performed using the major components of spent coffee ground, namely arabinogalactan, galactomannan, cellulose, and proteins. DGGE revealed that heterotrophic thermophilic bacteria are highly abundant in the hydrothermal springs and significant differences in community composition depending on the substrate were observed. DNA, isolated from enrichment cultures of different locations that were grown on the same substrate were pooled, and the respective metagenomes were analyzed. Results indicated that cultures grown on recalcitrant substrate SCG consists of a totally different thermophilic community, dominated by Dictyoglomus. Enrichments with galactomannan and arabinogalactan were dominated by Thermodesulfovibrio, while cultures with casein and cellulose were dominated by Thermus. This study indicates the high potential of thermophilic bacteria degrading recalcitrant substrate such as SCG and furthermore how the accessibility to complex polymers shapes the bacterial community.

  相似文献   
340.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号