首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   1篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
  1962年   1篇
排序方式: 共有77条查询结果,搜索用时 62 毫秒
31.
32.
We present a functional analysis of the last alpha-helical transmembrane segment (TMS12) of UapA, a uric acid-xanthine/H+ symporter in Aspergillus nidulans and member of the nucleobase-ascorbate transporter (NAT) family. First, we performed a systematic mutational analysis of residue F528, located in the middle of TMS12, which was known to be critical for UapA specificity. Substitution of F528 with non-aromatic amino acid residues (Ala, Thr, Ser, Gln, Asn) did not affect significantly the kinetics of UapA for its physiological substrates, but allowed high-capacity transport of several novel purines and pyrimidines. Allele-specific combinations of F528 substitutions with mutations in Q408, a residue involved in purine binding, led to an array of UapA molecules with different kinetic and specificity profiles. We propose that F528 plays the role of a novel-type selectivity filter, which, in conjunction with a distinct purine-binding site, control UapA-mediated substrate translocation. We further studied the role of TMS12 by analysing the effect of its precise deletion and chimeric molecules in which TMS12 was substituted with analogous domains from other NATs. The presence of any of the TMS12 tested was necessary for ER-exit while their specific amino acid composition affected the kinetics of chimeras.  相似文献   
33.
Benthic macroalgal communities constitute one of the ecological quality elements needed to implement the Water Framework Directive (2000/60/EC), the legislation targetted at sustainable management of the European aquatic environment. As the Directive foresees the establishment of Ecological Status Class boundaries and Reference Conditions in coastal waters, a study was conducted on the Attica coast of Greece to identify the best method to use macroalgal community data for evaluating ecological quality and at the same time keep the program within a low budget. Six seasonal quantitative and qualitative samples were taken from the upper infralittoral macroalgal communities on the Attica coast of Greece on six occasions between summer 1998 and spring 2002; these sites, which reflect a gradient of anthropogenic perturbation, were used on each occasion. A list of 60 macroalgal taxa was prepared, the cover value of each taxon was measured and the structure of the vegetation was described. The use of four different indices (Shannon-Weaver index, Pielou evenness, Multi-Dimensional Scaling plot of Bray-Curtis similarity, Ecological Evaluation index-EEI) were compared. The multidimensional scaling of Bray-Curtis similarity and the EEI were better at indicating the perturbation pattern of the study area. However, only the EEI succeeded in distinguishing four quality classes (‘low’ to ‘high’). By using EEI, a spatial scale-weighted evaluation of ecological quality was also performed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
34.
A sensitive and specific GC/MS method for the determination of methadone (MDN) and its two main metabolites, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP), in plasma samples obtained from venous and arterial umbilical cord blood and maternal blood has been developed, optimized and validated. Specimen preparation includes protein precipitation with acetonitrile and simultaneous solid-phase extraction of the three analytes. Methadone-d9 was used as internal standard for the determination of MDN and EMDP, while EDDP-d3 for EDDP. Limits of detection were 0.6 microg/L for MDN and 0.3 microg/L for EDDP and EMDP, while limits of quantification were 2.0 microg/L for MDN and 1.0 microg/L for EDDP and EMDP. The calibration curves were linear up to 2000 microg/L for MDN and up to 1000 microg/L for EDDP and EMDP. Absolute recovery ranged from 94.8 to 99.7% for all three analytes. Intra- and interday accuracy was less than 5.3 and 5.5%, respectively, while intra- and interday precision was less than 3.5 and 5.0%, correspondingly, for all analytes. The method proved suitable for the determination of MDN and its two main metabolites in plasma samples obtained from umbilical cord and maternal blood of a woman participating in a MDN maintenance program, during the prenatal and postpartum period.  相似文献   
35.
36.
Membrane engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target‐specific receptor‐like molecules on the cell surface. Previous studies have elucidated the biochemical aspects of the interaction between various analytes (including viruses) and their homologous membrane‐engineered cells. In the present study, purified anti‐biotin antibodies from a rabbit antiserum along with in‐house prepared biotinylated bovine serum albumin (BSA) were used as a model antibody‐antigen pair of molecules for facilitating membrane engineering experiments. It was proven, with the aid of fluorescence microscopy, that (i) membrane‐engineered cells incorporated the specific antibodies in the correct orientation and that (ii) the inserted antibodies are selectively interacting with the homologous target molecules. This is the first time the actual working concept of membrane engineering has been visualized, thus providing a final proof of the concept behind this innovative process. In addition, the fluorescence microscopy measurements were highly correlated with bioelectric measurements done with the aid of a bioelectric recognition assay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
38.
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.  相似文献   
39.
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ~13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ~10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.  相似文献   
40.
Mucin 1 is a well-established target for the early diagnosis of epithelial cancers. The nucleotides of the S1.3/S2.2 DNA aptamer involved in binding to variable number tandem repeat mucin 1 peptides have been identified using footprinting experiments. The majority of these binding nucleotides are located in the 25-nucleotide variable region of the total aptamer. Imino proton and 2D NMR spectra of truncated and total aptamers in supercooled water reveal common hydrogen-bonding networks and point to a similar secondary structure for this 25-mer sequence alone or embedded within the total aptamer. NMR titration experiments confirm that the TTT triloop structure is the primary binding site and show that the initial structure of the truncated aptamers is conserved upon interaction with variable number tandem repeat peptides. The thermal dependence of the NMR chemical shift data shows that the base-paired nucleotides melt cooperatively at 47 ±?4°C. The structure of the 25-mer oligonucleotide was determined using a new combined mesoscale molecular modeling, molecular dynamics and NMR spectroscopy investigation. It contains three Watson-Crick pairs, three consecutive mispairs and four Watson-Crick pairs capped by a TTT triloop motif. The 3D model structures (PDB 2L5K) and biopolymer chain elasticity molecular models are consistent with both NMR and long unconstrained molecular dynamics (10 ns) in explicit water, respectively. Database Structural data are available in the Protein Data Bank and BioMagResBank databases under the accession numbers 2L5K and 17129, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号