首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2697篇
  免费   190篇
  2023年   16篇
  2022年   19篇
  2021年   68篇
  2020年   32篇
  2019年   42篇
  2018年   47篇
  2017年   49篇
  2016年   94篇
  2015年   169篇
  2014年   170篇
  2013年   193篇
  2012年   267篇
  2011年   209篇
  2010年   133篇
  2009年   118篇
  2008年   159篇
  2007年   158篇
  2006年   125篇
  2005年   147篇
  2004年   132篇
  2003年   117篇
  2002年   77篇
  2001年   14篇
  2000年   18篇
  1999年   30篇
  1998年   21篇
  1997年   15篇
  1996年   21篇
  1995年   14篇
  1994年   8篇
  1993年   15篇
  1992年   14篇
  1991年   11篇
  1990年   17篇
  1989年   8篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1976年   7篇
  1975年   8篇
  1974年   3篇
  1972年   5篇
  1966年   5篇
  1931年   3篇
排序方式: 共有2887条查询结果,搜索用时 281 毫秒
991.
Heterologous expression of HIV-1 Gag in a variety of host cells results in its packaging into virus-like particles (VLPs) that are subsequently released into the extracellular milieu. This phenomenon represents a useful tool for probing cellular factors required for viral budding and has contributed to the discovery of roles for ubiquitin ligases and the endosomal sorting complexes required for transport (ESCRTs) in viral budding. These factors are highly conserved throughout eukaryotes and have been studied extensively in the yeast Saccharomyces cerevisiae, a model eukaryote previously utilized as a host for the production of VLPs. We used heterologous expression of HIV Gag in yeast spheroplasts to examine the role of ESCRTs and associated factors (Rsp5, a HECT ubiquitin ligase of the Nedd4 family; Bro1, a homolog of Alix; and Vps4, the AAA-ATPase required for ESCRT function in all contexts/organisms investigated) in the generation of VLPs. Our data reveal: 1) characterized Gag-ESCRT interaction motifs (late domains) are not required for VLP budding, 2) loss of function alleles of the essential HECT ubiquitin ligase Rsp5 do not display defects in VLP formation, and 3) ESCRT function is not required for VLP formation from spheroplasts. These results suggest that the egress of HIV Gag from yeast cells is distinct from the most commonly described mode of exit from mammalian cells, instead mimicking ESCRT-independent VLP formation observed in a subset of mammalian cells. As such, budding of Gag from yeast cells appears to represent ESCRT-independent budding relevant to viral replication in at least some situations. Thus the myriad of genetic and biochemical tools available in the yeast system may be of utility in the study of this aspect of viral budding.  相似文献   
992.
Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that Jointless (J), which encodes a MADS-box protein of the same clade than Short Vegetative Phase (SVP) and Agamous Like 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA--the orthologue of the Arabidopsis LEAFY (LFY) gene--shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the Single Flower Truss (SFT) gene, the tomato orthologue of Flowering Locus T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM.  相似文献   
993.
Heparanase is an enzyme involved in extracellular matrix remodelling and heparan sulphate proteoglycan catabolism. It is secreted by metastatic tumour cells, allowing them to penetrate the endothelial cell layer and basement membrane to invade target organs. The release of growth factors at the site of cleaved heparan sulphate chains further enhance the potential of the tumour by encouraging the process of angiogenesis. This leads to increased survival and further proliferation of the tumour. Aptamers are single or double stranded oligonucleotides that recognise specific small molecules, peptides, proteins, or even cells or tissues and have shown great potential over the years as diagnostic and therapeutic agents in anticancer treatment. For the first time, single stranded DNA aptamers were successfully generated against the active heterodimer form of heparanase using a modified SELEX protocol, and eluted based on increasing affinity for the target. Sandwich ELISA assays showed recognition of heparanase by the aptamers at a site distinct from that of a polyclonal HPSE1 antibody. The binding affinities of aptamer to immobilised enzyme were high (7 × 10(7) to 8 × 10(7) M(-1)) as measured by fluorescence spectroscopy. Immunohistochemistry and immunofluorescence studies demonstrated that the aptamers were able to recognise heparanase with staining comparable or in some cases superior to that of the HPSE1 antibody control. Finally, matrigel assay demonstrated that aptamers were able to inhibit heparanase. This study provides clear proof of principle concept that nucleic acid aptamers can be generated against heparanase. These reagents may serve as useful tools to explore the functional role of the enzyme and in the future development of diagnostic assays or therapeutic reagents.  相似文献   
994.
995.
G Suarez  BK Khajanchi  JC Sierra  TE Erova  J Sha  AK Chopra 《Gene》2012,506(2):369-376
The repeat in toxin (Rtx) of an environmental isolate ATCC 7966 of Aeromonas hydrophila consists of six genes (rtxACHBDE) organized in an operon similar to the gene organization found for the Rtx of the Vibrio species. The first gene in this operon (rtxA) encodes an exotoxin in vibrios, while other genes code for proteins needed for proper activation of RtxA and in secretion of this toxin from Vibrio cholerae. However, the RtxA of ATCC 7966, as well as from the clinical isolate SSU of A. hydrophila, was exclusively expressed and produced during co-infection of this pathogen with the host, e.g., HeLa cells, indicating that rtxA gene expression required host cell contact. Within the RtxA, an actin cross-linking domain (ACD) exists and to investigate the functionality of this domain, several truncated versions of ACD were generated to discern its minimal biological active region. Such genetically modified genes encoding ACD, which were truncated on either the NH(2) or the COOH terminal, as well as on both ends, were expressed from a bidirectional promoter of the pBI-enhanced green fluorescent protein (EGFP) vector in a HeLa-Tet-Off cell system. We demonstrated that only the full-length ACD of RtxA from A. hydrophila catalyzed the covalent cross-linking of the host cellular actin, whereas the ACD truncated on the NH(2), COOH or both ends did not exhibit such actin cross-linking characteristics. Further, we showed that the full-length ACD of A. hydrophila RtxA disrupted the actin cytoskeleton of HeLa cells, resulting in their rounding phenotype. Finally, our data provided evidence that the full-length ACD of RtxA induced host cell apoptosis. Our study is the first to report that A. hydrophila possesses a functional RtxA having an ACD that contributes to the host cell apoptosis, and hence could represent a potential virulence factor of this emerging human pathogen.  相似文献   
996.
Agonist potency at some neurotransmitter receptors has been shown to be regulated by voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by inhibitory autoreceptors. Likewise, receptor deactivation rates upon agonist removal have been implicated in autoreceptor function. Using G protein-coupled potassium (GIRK) channel activation in Xenopus oocytes as readout of receptor activity, we have investigated the voltage sensitivities and signaling kinetics of the hH3445 and hH3365 isoforms of the human histamine H3 receptor, which functions as an inhibitory auto- and heteroreceptor in the nervous system. We have also investigated both the human and the mouse homologues of the related histamine H4 receptor, which is expressed mainly on hematopoietic cells. We found that the hH3445 receptor is the most sensitive to voltage, whereas the hH3365 and H4 receptors are less affected. We further observed a marked difference in response deactivation kinetics between the hH3445 and hH3365 isoforms, with the hH3365 isoform being five to six-fold slower than the hH3445 receptor. Finally, using synthetic agonists, we found evidence for agonist-specific voltage sensitivity at the hH4 receptor. The differences in voltage sensitivities and deactivation kinetics between the hH3445, hH3365, and H4 receptors might be relevant to their respective physiological roles.  相似文献   
997.
Drug–membrane interactions of the candesartan cilexetil (TCV-116) have been studied on molecular basis by applying various complementary biophysical techniques namely differential scanning calorimetry (DSC), Raman spectroscopy, small and wide angle X-ray scattering (SAXS and WAXS), solution 1H and 13C nuclear magnetic resonance (NMR) and solid state 13C and 31P (NMR) spectroscopies. In addition, 31P cross polarization (CP) NMR broadline fitting methodology in combination with ab initio computations has been applied. Finally molecular dynamics (MD) was applied to find the low energy conformation and position of candesartan cilexetil in the bilayers. Thus, the experimental results complemented with in silico MD results provided information on the localization, orientation, and dynamic properties of TCV-116 in the lipidic environment. The effects of this prodrug have been compared with other AT1 receptor antagonists hitherto studied. The prodrug TCV-116 as other sartans has been found to be accommodated in the polar/apolar interface of the bilayer. In particular, it anchors in the mesophase region of the lipid bilayers with the tetrazole group oriented toward the polar headgroup spanning from water interface toward the mesophase and upper segment of the hydrophobic region. In spite of their localization identity, their thermal and dynamic effects are distinct pointing out that each sartan has its own fingerprint of action in the membrane bilayer, which is determined by the parameters derived from the above mentioned biophysical techniques.  相似文献   
998.
Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development, and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance, and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis because the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α2β2 tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I–III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α, or the von Hippel-Lindau protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.  相似文献   
999.
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.  相似文献   
1000.
RIP1 and RIP3 kinases are central players in TNF-induced programmed necrosis. Here, we report that?the RIP homotypic interaction motifs (RHIMs) of RIP1 and RIP3 mediate the assembly of heterodimeric filamentous structures. The fibrils exhibit classical characteristics of β-amyloids, as shown by Thioflavin T (ThT) and Congo red (CR) binding, circular dichroism, infrared spectroscopy, X-ray diffraction, and solid-state NMR. Structured amyloid cores are mapped in RIP1 and RIP3 that are flanked?by regions of mobility. The endogenous RIP1/RIP3 complex isolated from necrotic cells binds ThT, is ultrastable, and has a fibrillar core structure, whereas necrosis is partially inhibited by ThT, CR, and another amyloid dye, HBX. Mutations in the RHIMs of RIP1 and RIP3 that are defective in the interaction compromise cluster formation, kinase activation, and programmed necrosis in?vivo. The current study provides insight into the structural changes that occur when RIP kinases are triggered to execute different signaling outcomes and expands the realm of amyloids to complex formation and signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号