首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   7篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   10篇
  1997年   2篇
  1996年   2篇
  1986年   1篇
  1982年   2篇
  1980年   1篇
  1977年   3篇
  1976年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
21.
22.

Background  

The processes by which eggs develop in the insect ovary are well characterized. Despite a large number of Drosophila mutants that cannot lay eggs, the way that the egg is moved along the reproductive tract from ovary to uterus is less well understood. We remedy this with an integrative study on the reproductive tract muscles (anatomy, innervation, contractions, aminergic modulation) in female flies.  相似文献   
23.
Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1beta protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis.  相似文献   
24.
Current wound-healing models do not fully duplicate the in vivo human environment. The feasibility of grafting human full-thickness foreskin onto nude rats, as a model of acute wound healing, was evaluated. Incisions were then created on the grafted skin, and wound healing was evaluated. Full-thickness human skin was obtained after elective circumcision and was grafted subcutaneously onto the dorsal thorax of nude rats. At 10 days after transplantation, graft beds were judged for graft viability, on the basis of gross appearance, texture, and adherence. Full-thickness wounds were then made in the foreskin. Graft wounds were left to close by secondary intention. The wounds were allowed to heal for 7 days. Wounds were excised and tested for breaking stress. Histological evaluations included proliferating cell nuclear antigen, factor VIII, hematoxylin and eosin, and trichrome staining. Twenty grafts were performed, with 100 percent viability. Upon incision, all grafts bled freely, indicating a rich vascular supply and tissue viability. Graft viability was confirmed by the presence of proliferating cells in the parabasal stratum of the epithelium. Furthermore, there was evidence of angiogenesis, as confirmed by staining for factor VIII. Breaking stress was evaluated by tensiometry, 7 days after wounding. Histological evaluations revealed viable grafts and active wound-healing events. Full-thickness human skin can be successfully transplanted onto nude rats, providing a larger, more physiological model of human wound healing. This model closely parallels the in vivo situation, providing a promising model for study of the complex biological processes of acute human wound healing, in a reproducible manner.  相似文献   
25.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
26.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   
27.
Endocrine, behavioural and immunologic processes, together with body growth, were evaluated in gilts that were defeated at 10 weeks of age in resident-intruder tests. Immediately after defeat, gilts were either separated from or reunited with a familiar conspecific (litter-mate; always a barrow). Gilts were assigned to one of four treatments: (a) DI: defeat, followed by isolation (separation from original litter-mate; n=8); (b) I: no defeat, isolation (control group; n=9); (c) DP; defeat, followed by pair-housing (reunion with original litter-mate; n=8); and (d) P: no defeat, pair-housing (control group; n=8). The following general conclusions were derived: (1) social defeat caused pronounced short-term elevations in hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary activities, and of prolactin levels. Moreover, as soon as 1h after defeat, percentages of blood lymphocytes and neutrophilic granulocytes were, respectively, decreased and increased; (2) social defeat had some long-lasting influence on behaviour and physiology, but isolation predominantly determined responses in the longer term. Defeat, as well as isolation, resulted in increased cardiovascular activities compared to P controls, as observed in a novel object test (NOT: +7 days) and an aversion test (AVT: +14 days). Moreover, defeated as well as isolated gilts did not habituate to a repeated novel environment test (NET: -7, +2 and +7 days) in terms of frequencies of vocalising, whereas P controls did. Isolation, through the separation from any other pig, was responsible for the other observed long-term characteristics, which developed progressively. Isolated gilts showed high mobilities and high cortisol responses in the repeated NET (+7 days), not being habituated. This contrasted the reactions of pair-housed gilts, which were much reduced. In addition to their high cardiovascular activities in the NOT and the AVT, isolated gilts also displayed higher heart rates in the repeated NET and during human presence following the NOT, compared to pair-housed gilts. Finally, isolated gilts were more inhibited to approach a novel object (in the NOT) than pair-housed pigs; and (3) stress responses of defeated gilts were modulated by the subsequent social environment. Stimulation of the HPA-axis (plasma- and salivary cortisol) was prolonged in those defeated gilts which were isolated (observed in the first hour). Changes in leucocyte subsets were still observed after 3 days in DI, but were 'normalised' within 1 day in DP gilts. Two days after defeat, habituation to the repeated NET in terms of mobility and salivary cortisol responses occurred in control and DP gilts, but not in DI gilts. We argue that these effects of the social environment shortly after defeat were related to a stress-reducing effect of a stable social relationship, i.e. social support.  相似文献   
28.

Background

Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms.

Results

Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected.

Conclusions

Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.  相似文献   
29.
Large-scale fermentation of Pichia pastoris requires a large volume of methanol feed during the induction phase. However, a large volume of methanol feed is difficult to use in the processing suite because of the inconvenience of constant monitoring, manual manipulation steps, and fire and explosion hazards. To optimize and improve safety of the methanol feed process, a novel automated methanol feed system has been designed and implemented for industrial fermentation of P. pastoris. Details of the design of the methanol feed system are described. The main goals of the design were to automate the methanol feed process and to minimize the hazardous risks associated with storing and handling large quantities of methanol in the processing area. The methanol feed system is composed of two main components: a bulk feed (BF) system and up to three portable process feed (PF) systems. The BF system automatically delivers methanol from a central location to the portable PF system. The PF system provides precise flow control of linear, step, or exponential feed of methanol to the fermenter. Pilot-scale fermentations with linear and exponential methanol feeds were conducted using two Mut(+) (methanol utilization plus) strains, one expressing a recombinant therapeutic protein and the other a monoclonal antibody. Results show that the methanol feed system is accurate, safe, and efficient. The feed rates for both linear and exponential feed methods were within ± 5% of the set points, and the total amount of methanol fed was within 1% of the targeted volume.  相似文献   
30.
The epicardium is a major contributor of the cells that are required for the formation of coronary vessels. Mice lacking both copies of the gene encoding the Type III Transforming Growth Factor β Receptor (TGFβR3) fail to form the coronary vasculature, but the molecular mechanism by which TGFβR3 signals coronary vessel formation is unknown. We used intact embryos and epicardial cells from E11.5 mouse embryos to reveal the mechanisms by which TGFβR3 signals and regulates epicardial cell behavior. Analysis of E13.5 embryos reveals a lower rate of epicardial cell proliferation and decreased epicardially derived cell invasion in Tgfbr3−/− hearts. Tgfbr3−/− epicardial cells in vitro show decreased proliferation and decreased invasion in response to TGFβ1 and TGFβ2. Unexpectedly, loss of TGFβR3 also decreases responsiveness to two other important regulators of epicardial cell behavior, FGF2 and HMW-HA. Restoring full length TGFβR3 in Tgfbr3−/− cells rescued deficits in invasion in vitro in response TGFβ1 and TGFβ2 as well as FGF2 and HMW-HA. Expression of TGFβR3 missing the 3 C-terminal amino acids that are required to interact with the scaffolding protein GIPC1 did not rescue any of the deficits. Overexpression of GIPC1 alone in Tgfbr3−/− cells did not rescue invasion whereas knockdown of GIPC1 in Tgfbr3+/+ cells decreased invasion in response to TGFβ2, FGF2, and HMW-HA. We conclude that TGFβR3 interaction with GIPC1 is critical for regulating invasion and growth factor responsiveness in epicardial cells and that dysregulation of epicardial cell proliferation and invasion contributes to failed coronary vessel development in Tgfbr3−/− mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号