首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   20篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   10篇
  2013年   10篇
  2012年   14篇
  2011年   19篇
  2010年   25篇
  2009年   11篇
  2008年   19篇
  2007年   18篇
  2006年   14篇
  2005年   12篇
  2004年   10篇
  2003年   16篇
  2002年   21篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
51.
Phosphorylation is the only known in vivo substitution of starch, yet no structural evidence has been provided to explain its implications of the amylosidic backbone and its stimulating effects on starch degradation in plants. In this study, we provide evidence for a major influence on the glucosidic bond in starch specifically induced by the 3-O-phosphate. Two phosphorylated maltose model compounds were synthesized and subjected to combined molecular dynamics (MD) studies and 950 MHz NMR studies. The two phosphorylated disaccharides represent the two possible phosphorylation sites observed in natural starches, namely maltose phosphorylated at the 3'- and 6'-position (maltose-3'-O-phosphate and maltose-6'-O-phosphate). When compared with maltose, both of the maltose-phosphates exhibit a restricted conformational space of the alpha(1-->4) glycosidic linkage. When maltose is phosphorylated in the 3'-position, MD and NMR show that the glucosidic space is seriously restricted to one narrow potential energy well which is strongly offset from the global potential energy well of maltose and almost 50 degrees degrees from the Phi angle of the alpha-maltose crystal structure. The driving force is primarily steric, but the configuration of the structural waters is also significantly altered. Both the favored conformation of the maltose-3'-phosphate and the maltose-6'-phosphate align well into the 6-fold double helical structure of amylopectin when the effects on the glucosidic bond are not taken into account. However, the restrained geometry of the glucosidic linkage of maltose-3'-phosphate cannot be accommodated in the helical structure, suggesting a major local disturbing effect, if present in the starch granule semi-crystalline lattice.  相似文献   
52.
53.
Gelatinase B/matrix metalloproteinase-9 (MMP-9), a key regulator and effector of immunity, contains a C-terminal hemopexin domain preceded by a unique linker sequence of approximately 64 amino acid residues. This linker sequence is demonstrated to be an extensively O-glycosylated (OG) domain with a compact three-dimensional structure. The OG and hemopexin domains have no influence on the cleavage efficiency of MMP-9 substrates. In contrast, the hemopexin domain contains a binding site for the cargo receptor low density lipoprotein receptor-related protein-1 (LRP-1). Furthermore, megalin/LRP-2 is identified as a new functional receptor for the hemopexin domain of MMP-9, able to mediate the endocytosis and catabolism of the enzyme. The OG domain is required to correctly orient the hemopexin domain for inhibition by TIMP-1 and internalization by LRP-1 and megalin. Therefore, the OG and hemopexin domains down-regulate the bioavailability of active MMP-9 and the interactions with the cargo receptors are proposed to be the original function of hemopexin domains in MMPs.  相似文献   
54.
Accurate measures of visceral and abdominal subcutaneous fat are essential for investigating the pathophysiology of obesity. Classical anthropometric measures such as waist and hip circumference cannot distinguish between these two fat depots. Direct imaging methods such as computed tomography and magnetic resonance imaging (MRI) are restricted in large‐scale studies due to practical and ethical issues. We aimed to establish whether ultrasound is a valid alternative method to MRI for the quantitative assessment of abdominal fat depots in older individuals. The study population comprised 74 white individuals (41 men and 33 women, aged 67–76 years) participating in the Hertfordshire Birth Cohort Physical Activity trial. Anthropometry included height, weight, waist and hip circumferences. Abdominal fat was measured by ultrasound in two compartments: visceral fat defined as the depth from the peritoneum to the lumbar spine; and subcutaneous fat defined as the depth from the skin to the abdominal muscles and compared to reference measures by MRI (10‐mm single‐slice image). Ultrasound measures were positively correlated with MRI measures of visceral and subcutaneous fat (visceral: r = 0.82 and r = 0.80 in men and women, respectively; subcutaneous: r = 0.63 and 0.68 in men and women, respectively). In multiple regression models, the addition of ultrasound measures significantly improved the prediction of visceral fat and subcutaneous fat in both men and women over and above the contribution of standard anthropometric variables. In conclusion, ultrasound is a valid method to estimate visceral fat in epidemiological studies of older men and women when MRI and computed tomography are not feasible.  相似文献   
55.
In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC effectively individualizes the immune response of each member of the species. We have recently developed efficient methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying peptide-binding assays and predictors, and HLA tetramers for specific CTL staining and manipulation. This has enabled a complete mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto a HLA-I molecule (HLA-A*11:01), thereby generating recombinant human/swine chimeric MHC-I molecules as well as the intact SLA-1*0401 molecule. Biochemical peptide-binding assays and positional scanning combinatorial peptide libraries were used to analyze the peptide-binding motifs of these molecules. A pan-specific predictor of peptide–MHC-I binding, NetMHCpan, which was originally developed to cover the binding specificities of all known HLA-I molecules, was successfully used to predict the specificities of the SLA-1*0401 molecule as well as the porcine/human chimeric MHC-I molecules. These data indicate that it is possible to extend the biochemical and bioinformatics tools of the Human MHC Project to other vertebrate species.  相似文献   
56.
We sought to explore the distribution pattern of Na(+) channels across ventricular wall, and to determine its functional correlates, in the guinea pig heart. Voltage-dependent Na(+) channel (Na(v)) protein expression levels were measured in transmural samples of ventricular tissue by Western blotting. Isolated, perfused heart preparations were used to record monophasic action potentials and volume-conducted ECG, and to measure effective refractory periods (ERPs) and pacing thresholds, in order to assess excitability, electrical restitution kinetics, and susceptibility to stimulation-evoked tachyarrhythmias at epicardial and endocardial stimulation sites. In both ventricular chambers, Na(v) protein expression was higher at endocardium than epicardium, with midmyocardial layers showing intermediate expression levels. Endocardial stimulation sites showed higher excitability, as evidenced by lower pacing thresholds during regular stimulation and downward displacement of the strength-interval curve reconstructed after extrasystolic stimulation compared with epicardium. ERP restitution assessed over a wide range of pacing rates showed greater maximal slope and faster kinetics at endocardial than epicardial stimulation sites. Flecainide, a Na(+) channel blocker, reduced the maximal ERP restitution slope, slowed restitution kinetics, and eliminated epicardial-to-endocardial difference in dynamics of electrical restitution. Greater excitability and steeper electrical restitution have been associated with greater arrhythmic susceptibility of endocardium than epicardium, as assessed by measuring ventricular fibrillation threshold, inducibility of tachyarrhythmias by rapid cardiac pacing, and the magnitude of stimulation-evoked repolarization alternans. In conclusion, higher Na(+) channel expression levels may contribute to greater excitability, steeper electrical restitution slopes and faster restitution kinetics, and greater susceptibility to stimulation-evoked tachyarrhythmias at endocardium than epicardium in the guinea pig heart.  相似文献   
57.
58.
Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map.  相似文献   
59.
Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC), and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections.  相似文献   
60.

Background

Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL''s are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL''s. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers.

Methodology/Principal Findings

We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps.

Conclusions/Significance

We have developed an efficient “one-pot, mix-and-read” strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号