首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   20篇
  国内免费   1篇
  321篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   10篇
  2013年   10篇
  2012年   14篇
  2011年   19篇
  2010年   25篇
  2009年   11篇
  2008年   19篇
  2007年   18篇
  2006年   14篇
  2005年   12篇
  2004年   10篇
  2003年   16篇
  2002年   21篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有321条查询结果,搜索用时 9 毫秒
241.
We have undertaken a phenotypic approach in the mouse to identifying molecules involved in inner ear function by N-ethyl-N-nitrosourea mutagenesis followed by screening for new dominant mutations affecting hearing or balance. The pathology and genetic mapping of the first of these new mutants, tailchaser (Tlc), is described here. Tlc/+ mutants display classic behavioural symptoms of a vestibular dysfunction, including head-shaking and circling. Behavioural testing of ageing mice revealed a gradual deterioration of both hearing and balance function, indicating that the pathology caused by the Tlc mutation is progressive, similar to many dominant nonsyndromic deafnesses in humans. Based on scanning electron microscopy (SEM) studies, Tlc clearly plays a developmental role in the hair cells of the cochlea since the stereocilia bundles fail to form the characteristic V-shape pattern around the time of birth. By young adult stages, Tlc/+ outer hair bundles are grossly disorganised although inner hair bundles appear relatively normal by SEM. Increased compound action potential thresholds revealed that the Tlc/+ cochlear hair cells were not functioning normally in young adults. Similar to inner hair cells, the hair bundles of the vestibular hair cells also do not appear grossly disordered. However, all types of hair cells in the Tlc/+ inner ear eventually degenerate, apparently regardless of the degree of organisation of their hair bundles. We have mapped the Tlc mutation to a 12 cM region of chromosome 2, between D2Mit164 and D2Mit423. Based on the mode of inheritance and map location, Tlc appears to be a novel mouse mutation affecting both hair cell survival and stereocilia bundle development.  相似文献   
242.
Recently we demonstrated a strong induction of activin expression after skin injury, suggesting a function of this transforming growth factor-beta family member in wound repair. To test this possibility, we generated transgenic mice that overexpress the activin betaA chain in the epidermis under the control of a keratin 14 promoter. The transgenic mice were significantly smaller than control littermates, and they had smaller ears and shorter tails. In their skin, the fatty tissue was replaced by connective tissue and a severe thickening of the epidermis was found. The spinous cell layer was significantly increased, and the epidermal architecture was highly disorganized. These histological abnormalities seem to result from increased proliferation of the basal keratinocytes and abnormalities in the program of keratinocyte differentiation. After skin injury, a significant enhancement of granulation tissue formation was detected in the activin-overexpressing mice, possibly as a result of premature induction of fibronectin and tenascin-C expression. These data reveal novel activities of activin in the regulation of keratinocyte proliferation and differentiation as well as in dermal fibrosis and cutaneous wound repair.  相似文献   
243.
244.
During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells.  相似文献   
245.
Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan‐genome analysis has revealed that 30% of genes belong to the core‐genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA‐seq analysis compared the short‐ and long‐term responses of the toluene‐sensitive KT2440 strain and the highly tolerant DOT‐T1E strain. The sensitive strain activates a larger number of genes in a higher magnitude than DOT‐T1E. This is expected because KT2440 bears one toluene tolerant pump, while DOT‐T1E encodes three of these pumps. Both strains activate membrane modifications to reduce toluene membrane permeability. The KT2440 strain activates the TCA cycle to generate energy, while avoiding energy‐intensive processes such as flagellar biosynthesis. This suggests that KT2440 responds to toluene by focusing on survival mechanisms. The DOT‐T1E strain activates toluene degradation pathways, using toluene as source of energy. Among the unique genes encoded by DOT‐T1E is a 70 kb island composed of genes of unknown function induced in response to toluene.  相似文献   
246.
247.
Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole‐lake production may be benthic. The large declines (5–45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near‐shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes.  相似文献   
248.
Phosphoenolpyruvate carboxykinase‐1 (PCK1) is the rate‐limiting enzyme in the hepatic gluconeogenic pathway. Studies have shown that overexpression of Pck1 in mice results in obesity‐related traits and higher levels of physical activity (PA). Therefore, our aims were to investigate whether common genetic variation in the PCK1 gene influences obesity‐related traits, PA, and fitness, and to examine whether PA and fitness attenuate the influence of the PCK1 polymorphisms on obesity in children. Analyses were undertaken on data from Danish and Estonian children (958 boys and 1,104 girls) from the European Youth Heart Study (EYHS), a school‐based, cross‐sectional study of children (mean ± s.d. age: 9.6 ± 0.4 years) and adolescents (15.5 ± 0.5 years). We genotyped eight polymorphisms that captured the common genetic variations in the PCK1 gene. The association between the PCK1 polymorphisms and BMI, waist circumference (WC), sum of four skinfolds, PA, and fitness was tested using an additive model adjusted for age, age‐group, gender, maturity, and country. Interactions were tested by including interaction terms in the model. None of the polymorphisms were significantly associated with BMI, WC, sum of four skinfolds, PA, and fitness, and also with the risk of being overweight or obese (P > 0.05). The interactions between the polymorphisms and age‐group, gender, PA, and fitness were not statistically significant. This is the first study to comprehensively examine the association of PCK1 polymorphisms with obesity, PA, and fitness. Despite strong evidence from animal studies, our study in the EYHS cohort failed to identify an association of PCK1 polymorphisms with obesity, PA, and fitness.  相似文献   
249.
The complement system is an important part of our immune system, and complement defects lead generally to increased susceptibility to infections and autoimmune diseases. We have studied the role of complement activity in relation with chronic rhinosinusitis (CRS), and more specifically studied whether complement defects collectively predispose individuals for CRS or affect CRS severity. The participants comprised 87 CRS patients randomly selected from the general population, and a control group of 150 healthy blood donors. The CRS patients were diagnosed according to the European Position Paper on Rhinosinusitis and nasal Polyps criteria, and severity was evaluated by the Sino-nasal Outcome Test-22. Serum samples were analysed by ELISA for activity of the respective pathways of complement, and subsequently for serum levels of relevant components. We found that the frequency of complement defects was significantly higher among CRS patients than among healthy control subjects. A majority of Mannan-binding lectin deficient CRS patients was observed. The presence of complement defects had no influence on the severity of subjective symptoms. Our studies show that defects in the complement system collectively may play an immunological role related to the development of CRS. However, an association between severity of symptoms and presence of complement defects could not be demonstrated.  相似文献   
250.

Background

Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2 diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts.

Methodology/Principal Findings

Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034<P<6.6×10−5) in healthy controls. In addition to our previous report for association with FPG, the A-allele of GCK rs1799884 was also associated with reduced homeostasis model assessment of beta-cell function (HOMA-B) (P = 0.0015). Together with GCKR rs780094, the risk alleles of these SNPs exhibited dosage effect in their associations with increased FPG (P = 2.9×10−9) and reduced HOMA-B (P = 1.1×10−3). Meta-analyses strongly supported additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG.

Conclusions/Significance

Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号