首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   12篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1961年   1篇
  1950年   1篇
  1925年   1篇
  1915年   1篇
排序方式: 共有132条查询结果,搜索用时 109 毫秒
81.
The polyphenolic compounds curcumin and quercetin increased sensitivity of ovarian cancer cells (CAOV3 and SKOV3) to cisplatin. The effect was obtained when the compounds were added simultaneously with cisplatin, as well as when they were added 24 h before. High serum levels of certain cytokines, for example interleukin-6 (IL-6), have been associated with poor prognosis and cisplatin resistance in various forms of cancer. Furthermore, it has been hypothesized that cytokines may increase proliferation, metastasis, and stimulate production of detoxification enzymes and multi-drug resistant proteins. Curcumin inhibits the production of many cytokines. The two ovarian cell lines differ significantly in IL-6 production, and correspondingly the high producer, CAOV3, was less susceptible to cisplatin. Curcumin inhibited the production of IL-6 in this cell suggesting that one of the mechanisms for synergy between cisplatin and curcumin was by reducing the autologous production of IL-6. However, the synergy was also observed in the low IL-6 producer, SKOV3, indicating that the action was most probably a result of multiple targeting. In sum, this study suggests that the compounds, curcumin and quercetin, potentially may be useful for enhancing drug sensitivity in certain cancer.  相似文献   
82.
Retinoids have great promise in the area of cancer therapy and chemoprevention. Although some tumor cells are sensitive to the growth inhibitory effect of all-trans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-((1-Admantyl)-4-hydroxyphenyl)-2-naphthalenecarboxylic acid (CD437) is a conformationally restricted synthetic retinoid that induces growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. To better understand the mechanism by which CD437 induces apoptosis in ovarian tumor cell lines, we prepared a cell line, CA-CD437R, from the ATRA-sensitive ovarian cell line, CA-OV-3, which was resistant to CD437. We found that the CD437-resistant cell line was also resistant to the induction of apoptosis by tumor necrosis factor-alpha but not resistant to the induction of apoptosis by another synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. We also show that this cell line remains ATRA-sensitive and exhibits no deficiencies in RAR function. Analysis of this CD437-resistant cell line suggests that the pathway for induction of apoptosis by CD437 is similar to the pathway utilized by tumor necrosis factor-alpha and different from the pathway induced by the synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. The CA-CD437R cell line is a valuable tool, permitting us to further elucidate the molecular events that mediate apoptosis induced by CD437 and other synthetic retinoids. Results of experiments utilizing this cell line suggest that the alteration responsible for resistance of CA-CD437R cells to CD437 induced event maps after the activation of p38 and TR3 expression, prior to mitochondrial depolarization, subsequent release of cytochrome c and activation of caspase-9 and caspase-3.  相似文献   
83.
84.
Retinoids and ovarian cancer   总被引:13,自引:0,他引:13  
Each year, an estimated 26,000 women in the United States are diagnosed with ovarian cancer. During any given year, approximately 14,500 women die from this disease. Ovarian cancer is the seventh most common cancer in women worldwide, after breast, cervix, colon/rectum, stomach, corpus uteri, and lung cancers. In the U.S., ovarian cancer is the second most common gynecologic cancer, and is the fourth leading cause of solid tumor cancer deaths among women. Currently, postoperative chemotherapy of ovarian cancer is still suboptimal. Drug resistance is a common problem resulting in only 20 approximately 30% overall 5-year survival rates. Clearly, continued development of alternative therapeutic strategies is essential for the management of this fatal disease. A number of recent studies have suggested that retinoids may play a potential role as an ovarian cancer chemotherapeutic agent. Retinoids, the natural and synthetic derivatives of vitamin A, have been shown to inhibit the growth of human ovarian cancer cells both in vivo and in culture. This review will initially summarize what is known about the pathological and molecular characteristics of ovarian carcinoma. It will then describe retinoid metabolism and the role of the cellular and nuclear retinoid binding proteins in mediating retinoid action. Following this general review of retinoids and their function, data supporting the role of retinoic acid as a suppresser of ovarian carcinoma cell growth will be presented. Particular attention will be paid to studies suggesting that members of the RB family of proteins and RB2/p130, in particular, are the molecular targets responsible for retinoid mediated inhibition of ovarian carcinoma cell growth. This review will then conclude with a brief discussion of two synthetic retinoids, 4 HPR R(fenretinide) and AHPN/CD437, which have been shown to induce apoptosis in ovarian tumor cells. It will be clear from the studies summarized in this review that retinoids represent a potentially powerful alternative to present chemotherapeutic approaches to the treatment of late stage ovarian cancer.  相似文献   
85.
86.
Attempts to prepare substituted chromones as novel retinoids revealed that some chromones were unstable under Wadsworth–Horner–Emmons reaction conditions. Hence, Wittig reactions were used to prepare chromone-based compounds as potential retinoids. Firstly, Wittig reagents prepared from 3-bromomethyl-chromen-4-one were reacted with olefinic-aldehydes to provide the target compounds with all-trans side chains in good yield. The approach supplies a useful general route to structurally diverse chromone-based compounds possessing a variety of side chains. Sequential Wittig reactions were used also to prepare a chromone-based retinoid. These novel compounds were evaluated in binding assays and a high affinity RAR ligand was identified. Crystal structures obtained for two key precursors aided the interpretation of binding data.  相似文献   
87.
88.
All trans retinoic acid (atRA) has been shown to inhibit the growth of CAOV3 ovarian carcinoma cells and to elevate the level of p27 cyclin-dependent kinase inhibitor. We report here that phosphorylation at S10 residue is an important event in mediating p27 role in atRA induced growth arrest. atRA treatment of atRA sensitive CAOV3 cells increases the levels of S10 phospho-p27 in both nuclear and cytoplasmic cell compartments. This increase is accompanied by a decrease in the levels of skp2 protein. This effect was not observed in SKOV3 cells which are resistant to atRA growth inhibitory effect. An A10-p27 mutant that cannot be phosphorylated at S10 induces a dominant negative effect on the atRA effect on the levels and activity of endogenous p27. Overexpression of A10-p27 mutant renders CAOV3 cells more resistant to atRA treatment and reverses the effect that atRA has on p27 binding to CDKs, on CDK activity, and on the expression of S phase genes.  相似文献   
89.
Sodium butyrate arrests the growth of actively proliferating Swiss 3T3 cells. A previous report from our laboratory describes the pattern of expression of a representative group of growth-associated genes following treatment of Swiss 3T3 cells with sodium butyrate. The results of this study suggest that sodium butyrate-induced growth arrest involves events which lead to adipocyte differentiation (Toscani, A., Soprano, D.R., and Soprano, K.J. (1988) Oncogene Res. 3, 233-238). However, while sodium butyrate by itself could apparently initiate adipogenesis, it alone was not sufficient to maintain this differentiation state. We now wish to further characterize the role of sodium butyrate in adipocyte differentiation. Subconfluent cultures of Swiss 3T3 cells were treated with sodium butyrate in combination with other agents known to induce Swiss 3T3 cell adipogenesis (e.g. 1-methyl-3-isobutylxanthine, insulin, and dexamethasone) and then analyzed at various times thereafter for: (a) the presence of high concentrations of intracellular lipid as detected by microscopic examination of treated cells following staining with lipid-specific dyes and (b) the expression of four genes known to be modulated during the differentiation of preadipocytes into mature adipocytes (actin, adipsin, lipoprotein lipase, and adipocyte P2). Our results show that sodium butyrate in combination with either insulin or dexamethasone can fully differentiate Swiss 3T3 cells into adipocytes, at least as determined by accumulation of high levels of intracellular lipid. Moreover, the sodium butyrate-mediated process of differentiation can occur in subconfluent, actively proliferating cells. Thus, these experiments describe a new, previously unidentified activity of sodium butyrate and also suggest that this model system may be a useful one to study the relationship between growth arrest and differentiation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号