首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   12篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1961年   1篇
  1950年   1篇
  1925年   1篇
  1915年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
41.
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All‐trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA‐mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA‐sensitive SCC‐25 cells compared to atRA‐resistant SCC‐9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC‐25 cells but not in SCC‐9 cells. Gene expression levels were confirmed for seven of these genes by RT‐qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC‐25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA‐dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on day 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437–1444, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
42.
All-trans-retinoic acid (ATRA) has been shown to inhibit the growth of a number of ovarian tumor cell lines while others have been found to be resistant to retinoid suppression of growth. Interestingly, two synthetic retinoids, CD437 and 4-HPR, inhibit the growth of both ATRA-sensitive (CA-OV-3) and ATRA-resistant (SK-OV-3) ovarian tumor cells. However, in contrast to ATRA, both induce apoptosis. Our goal was to elucidate the mechanism by which these two synthetic retinoids induce apoptosis in ovarian tumor cells. Since it has been documented that apoptosis induction is often mediated by the activation of a cascade of proteases known as caspases, we initially studied the role of caspases in induction of apoptosis by CD437 and 4-HPR. We found that both retinoids induced caspase-3 and caspase-9 enzyme activity. Furthermore, using caspase specific inhibitors we determined that caspase-3 and caspase-9 activity was essential for the induction of apoptosis by these synthetic retinoids since these inhibitors completely blocked CD437 and 4-HPR induced apoptosis. Interestingly, we found that treatment with bongkriekic acid (BA), a mitochondrial membrane depolarization inhibitor, blocked apoptosis, caspase-9 activation and caspase-3 activation induced by both retinoids. Finally, we were able to determine that CD437 treatment induced the translocation of TR3, a nuclear orphan receptor, whereas, 4-HPR did not. Our results suggest that CD437 and 4-HPR initially activate separate pathways to induce mitochondrial depolarization but both utilize mitochondrial depolarization, caspase-9 activation, and caspase-3 activation in the later stages of apoptosis induction.  相似文献   
43.
44.
Levels of Rb2/p130 protein are increased 5-10-fold following all-trans-retinoic acid (ATRA) treatment of the retinoid-sensitive ovarian adenocarcinoma cell line CAOV3, but not the retinoid-resistant adenocarcinoma cell line SKOV3. We found that this increase in Rb2/p130 protein levels in ATRA-treated CAOV3 cells was the result of an increased protein stability. Moreover, Rb2/p130 exhibited a decreased ubiquitination following ATRA treatment. Because phosphorylation frequently mediates ubiquitination of proteins, we examined the serine/threonine phosphatase activity in our CAOV3 cells following ATRA treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate. We have made use of a battery of Rb2/p130 mutants to determine the sites dephosphorylated in response to ATRA treatment of CAOV3 cells. Obligate CDK4 phosphorylation sites seemed most important to the stability of the protein and are among the candidate sites that are dephosphorylated by PP2A following ATRA treatment. Finally, using both small interfering RNA specific to the catalytic subunit of PP2A and a variant of the SKOV3 cell line that overexpresses PP2A, we have shown that modulation of PP2A protein levels correlates with the ability of ATRA to inhibit growth of ovarian carcinoma cells. Our data suggest that ATRA mediates growth inhibition by stabilizing Rb2/p130 via a mechanism that involves induction of PP2A, an enzyme that can potentially dephosphorylate Rb2/p130, thereby protecting it from degradation by the proteasome.  相似文献   
45.
BACKGROUND: Phocomelia, which is primarily due to a disruption in the proximodistal axis, is found in virtually all mouse embryos exposed to high doses of retinoic acid (RA) on 11 days post coitum (dpc). METHODS: To identify genes that potentially mediate the effects of retinoic acid (RA) on limb development, we have examined the expression of 9,000 clones from the IMAGE consortium by microarray analysis of RNA isolated from 11 dpc mouse forelimbs exposed to RA or vehicle for 6 hr. Eight genes that demonstrated altered expression were chosen for further study of their mRNA levels using RT-PCR. Protein levels were determined by Western blot analysis. RESULTS: Of the 9,000 genes examined in the microarray, approximately 111 demonstrated altered expression (33 known genes and 78 ESTs). Of the eight known genes chosen for further study using RT-PCR, four mRNAs (PBX1a, PBX1b, IGF-Ia, and IGF-Ib) demonstrated consistent elevation ( approximately 3-fold) in their levels after RA treatment in both the forelimbs and hindlimbs as early as 3 hr after RA treatment. In addition to the two PBX1 isoforms, the mRNA level of the other two subtypes (PBX2 and PBX3) and the level of PBX1/2/3 protein were also found to be elevated in limb buds after RA treatment. Finally, we examined the expression of MEIS1, MEIS2, and MEIS3 because these proteins are necessary for PBX nuclear localization. The mRNA level of all three subtypes of MEIS were elevated approximately three- to four-fold in both the forelimbs and hindlimbs after RA treatment. CONCLUSIONS: Because both PBX and MEIS (and their orthologs) are believed to be involved in the control of proximodistal axis formation in mouse and fly limbs and IGFs in the development of limbs, we suggest that increases in PBX, MEIS and IGF-1 mRNA levels may contribute to proximodistal limb reduction defects caused by teratogenic doses of RA.  相似文献   
46.
Alpha-1 antitrypsin messenger RNA (A1AT mRNA) was determined in alveolar macrophages and in peripheral blood monocytes of healthy individuals using a sensitive RNase protection assay. Determinations were made of bacterial lipopolysaccharide (LPS) stimulated and unstimulated cells. We found that the amount of A1AT mRNA increased 7.3 and 14 times after 4 h of incubation with LPS for monocytes and macrophages, respectively (relative to total RNA). The increase was 12.3 and 14.8 times, respectively, when expressed as increase per cell. In both cell types there was wide interindividual variation in LPS response: 2-36 and 5-12 times for monocytes and macrophages, respectively. The possible significance of A1AT production of monocytes and macrophages may be the local control of granulocytic proteases such as elastase and cathepsin G.  相似文献   
47.
We have developed a procedure that gives a very high efficiency of transfection in mammalian cells with low-molecular-weight DNA (approximately 10(4) base pairs). The procedure uses cells in suspension that are shocked with polyethylene glycol 4 h after replating. We compared this transfection technique to the standard technique involving manual microinjection of DNA into the nuclei of mammalian cells, using recombinant plasmids containing the simian virus 40 A gene or the herpes simplex virus thymidine kinase gene or both. The efficiency of transfection depends on a number of variables, the most important of which is the difference in transfectability of different cell lines. In our laboratory, the cell line that had the highest efficiency of transfection was tk-ts13, which is derived from baby hamster kidney cells that are deficient in thymidine kinase and temperature sensitive for growth. Under the appropriate conditions, as many as 70% of these cells can be transfected so that transient gene expression can be detected. With the manual microinjection technique, gene expression is independent of the cell line used and occurs faster than after transfection. The results suggest that the critical stage in transfection is the delivery of DNA molecules to the nucleus. Our experiments also indicate that an enzymatic function, in our case, thymidine kinase activity, gives a higher percentage of positive transfectants than when proteins are visualized only by indirect immunofluorescence. The transfection procedure described in this paper is simple and reproducible and, although less efficient than microinjection, ought to be useful in phenotypic and genotypic studies in which transfer of genes to a large number of cells is desirable.  相似文献   
48.
We have investigated the mechanisms by which all-trans retinoic acid (ATRA) causes growth inhibition of ovarian carcinoma cells. As a model, we have studied the CAOV3 cell line, which is sensitive to ATRA, and the SKOV3 cell line, which is resistant. We have found that treatment of CAOV3 cells with ATRA causes a 5-10 fold increase in the protein level of the cyclin dependent kinase inhibitor p27/Kip1. p27/Kip1 protein upregulation is important in ovarian carcinoma as primary tumors are frequently found lacking this protein. The increase in p27/Kip1 is detected by day 3 of ATRA treatment of CAOV3 cells, and is maximal by day 5. Messenger RNA levels of p27/Kip1 do not change in CAOV3 cells following ATRA treatment, however, we have shown that p27/Kip1 mRNA is more stable in ATRA treated CAOV3 cells. Conversely, the ATRA resistant cell line SKOV3 fails to show p27/Kip1 accumulation. Interestingly, the SCF component protein SKP2 appears to be decreased in CAOV3 cells treated with ATRA. We have also shown that the ATRA dependent increase in p27/kip1 protein in CAOV3 cells leads to a decrease in the kinase activity of cyclin dependent kinase 4 (CDK4) following ATRA treatment. Finally, we found that CAOV3 cells stably transfected with a p27/kip1antisense construct, which express lower levels of p27/kip1 following ATRA treatment, and have a higher CDK4 kinase activity are less sensitive to ATRA induced growth suppression. Taken together our data suggest ATRA-induced growth inhibition in CAOV3 ovarian carcinoma cells involves modulation of the CDK inhibitor p27/kip1.  相似文献   
49.
In previous studies we have shown that all-trans retinoic acid (atRA)-treatment of the atRA-sensitive ovarian carcinoma cell line CA-OV3 repressed AP-1 activity by about 50%, while a similar effect was not observed in the atRA-resistant ovarian carcinoma cell line, SK-OV3. These results suggested that the repression of AP-1 activity may be one of the mechanisms by which atRA inhibits the growth of atRA-sensitive CA-OV3 cells. In the present studies, we investigated further the molecular mechanism by which AP-1 activity is repressed by atRA. We show that the repression of AP-1 activity correlates with an increase in JunB protein expression and a decrease in N-terminal phosphorylation of c-Jun. The decrease in N-terminal phosphorylation of c-Jun does not appear to be modulated by JNK or ERK, since their protein expression patterns and kinase activity do not correlate with the repression of AP-1 activity following treatment with atRA. However, the activity of the protein phosphatase PP2A was found to increase 24 h following atRA treatment in CA-OV3 cells. Moreover, the catalytic subunit of PP2A was found to associate with c-Jun in vivo following atRA treatment. Since the inhibition of AP-1 activity following atRA treatment of CA-OV3 cells was abolished in the presence of specific PP2A inhibitors, it is likely that PP2A plays an important role in the atRA-induced repression of AP-1.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号