首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7599篇
  免费   647篇
  国内免费   3篇
  2024年   6篇
  2023年   52篇
  2022年   137篇
  2021年   234篇
  2020年   147篇
  2019年   159篇
  2018年   189篇
  2017年   153篇
  2016年   295篇
  2015年   480篇
  2014年   520篇
  2013年   614篇
  2012年   757篇
  2011年   642篇
  2010年   450篇
  2009年   387篇
  2008年   457篇
  2007年   458篇
  2006年   399篇
  2005年   331篇
  2004年   303篇
  2003年   318篇
  2002年   239篇
  2001年   43篇
  2000年   35篇
  1999年   49篇
  1998年   49篇
  1997年   36篇
  1996年   33篇
  1995年   22篇
  1994年   16篇
  1993年   24篇
  1992年   38篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   10篇
  1987年   14篇
  1986年   9篇
  1985年   6篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1979年   5篇
  1978年   8篇
  1976年   4篇
  1975年   11篇
  1937年   3篇
排序方式: 共有8249条查询结果,搜索用时 15 毫秒
961.
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate‐based species distribution models (S‐SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate‐based S‐SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate‐based S‐SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S‐SDMs were more accurate in plant‐rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate‐based S‐SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate‐based S‐SDMs.  相似文献   
962.
Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, Δχ. For most nuclei, the PCSs back-calculated from the Δχ tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches—clustered around G41, N52, and A81—exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.  相似文献   
963.
Cross-talk between the immune- and nervous-system is considered an important biological process in health and disease. Because mast cells are often strategically placed between nerves and surrounding (immune)-cells they may function as important intermediate cells. This review summarizes the current knowledge on bidirectional interaction between mast cells and nerves and its possible relevance in (inflammation-induced) increased nociception. Our main focus is on mast cell mediators involved in sensitization of TRP channels, thereby contributing to nociception, as well as neuron-released neuropeptides and their effects on mast cell activation. Furthermore we discuss mechanisms involved in physical mast cell-nerve interactions. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
964.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   
965.
There is evidence that the E3 ubiquitin ligases muscle ring finger-1 (MuRF1) and atrogin-1, which mediate the ubiquitination of certain proteins and thereby their proteolysis, are regulated by cyclical nutritional treatments varying in lysine content. In order to explore further the regulatory mechanisms involved in metabolic adaptation to dietary changes, we investigated the effects of daily variations in energy [2800 (E?) followed by 3200 kcal/kg (E+)], protein [230 (P+) followed by 150g/kg (P?)] or both [E?P+ followed by E+P?] on muscle protein metabolism in 2-week-old male broiler chickens. Growth performance was similar for all treatments. Expression of atrogin-1 and MuRF1 was changed by alternation of diets varying in protein (higher expression with P? vs. P+) and energy content (higher expression with E? vs. E+). The expression of atrogin-1 was regulated with mixed diets (increase in E+P? vs. E?P+) but not that of MuRF1. Such regulation may involve the mammalian target of rapamycin (mTOR), which was more phosphorylated with P+ than with P?. Eukaryotic initiation factor 4E binding protein, p70S6 kinase and ribosomal protein S6, which are mTOR targets known to control protein synthesis, were highly activated by increased protein content (P+ vs. P?). The mechanisms coordinating the protein synthesis/proteolysis balance remain to be characterized.  相似文献   
966.
A novel approach to the study of molecular interactions on the surface of mammalian cells using a QCM biosensor was developed. For this study, an epidermoid carcinoma cell line (A-431) and a breast adenocarcinoma cell line (MDA-MB-468) were immobilized onto polystyrene-coated quartz crystals. The binding and dissociation between the lectin Con A and the cells as well as the inhibition of the binding by monosaccharides were monitored in real time and provided an insight into the complex avidic recognition of cell glycoconjugates. The real-time lectin screening of a range of lectins, including Con A, DBA, PNA and UEA-I, enabled the accurate study of the glycosylation changes between cells, such as changes associated with cancer progression and development. Furthermore, the kinetic parameters of the interaction of Con A with MDA-MB-468 cells were studied. This application provides investigators in the field of glycobiology with a novel tool to study cell surface glycosylation and may also have impacts on drug discovery.  相似文献   
967.
Cytokines are well recognized for the pleiotropic nature of their signaling and biological activities on many cell types and their role in health and disease. Recent years have seen a steady stream of new cytokine receptor crystal structures including those that are activated by GM-CSF, type I interferon, and a variety of interleukins. Highlights include the observation of a dodecameric signaling complex for the GM-CSF receptor, electron microscopy imaging of an intact gp130/IL-6/IL-6Rα ternary receptor complex bound to its signal transducing Janus kinase and visualization of novel cytokine recognition mechanisms in the interleukin-17 and type I interferon families. This increasing knowledge in cytokine structural biology is driving new opportunities for developing novel therapies to modulate cytokine function in a diverse range of diseases including malignancies and chronic inflammation.  相似文献   
968.
Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.  相似文献   
969.
970.
Hit-to-lead evolution of 2-(2-((2-(4-chlorophenoxy)ethyl)thio)-1H-benzo[d]imidazol-1-yl)acetic acid (1), discovered in a high-throughput screening campaign as a novel chemotype of CRTh2 receptor antagonist, is presented. SAR development as well as in vitro and in vivo DMPK properties of selected representatives of substituted 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl)acetic acids are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号