首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7599篇
  免费   647篇
  国内免费   3篇
  2024年   6篇
  2023年   52篇
  2022年   137篇
  2021年   234篇
  2020年   147篇
  2019年   159篇
  2018年   189篇
  2017年   153篇
  2016年   295篇
  2015年   480篇
  2014年   520篇
  2013年   614篇
  2012年   757篇
  2011年   642篇
  2010年   450篇
  2009年   387篇
  2008年   457篇
  2007年   458篇
  2006年   399篇
  2005年   331篇
  2004年   303篇
  2003年   318篇
  2002年   239篇
  2001年   43篇
  2000年   35篇
  1999年   49篇
  1998年   49篇
  1997年   36篇
  1996年   33篇
  1995年   22篇
  1994年   16篇
  1993年   24篇
  1992年   38篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   10篇
  1987年   14篇
  1986年   9篇
  1985年   6篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1979年   5篇
  1978年   8篇
  1976年   4篇
  1975年   11篇
  1937年   3篇
排序方式: 共有8249条查询结果,搜索用时 423 毫秒
281.
282.
SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram‐negative bacteria. Both Skp and FkpA are holdases that prevent the self‐aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone–client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone–protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.  相似文献   
283.
Bacillus subtilis GLB191 (hereafter GLB191) is an efficient biological control agent against the biotrophic oomycete Plasmopara viticola, the causal agent of grapevine downy mildew. In this study, we show that GLB191 supernatant is also highly active against downy mildew and that the activity results from both direct effect against the pathogen and stimulation of the plant defences (induction of defence gene expression and callose production). High-performance thin-layer chromatography analysis revealed the presence of the cyclic lipopeptides fengycin and surfactin in the supernatant. Mutants affected in the production of fengycin and/or surfactin were thus obtained and allowed us to show that both surfactin and fengycin contribute to the double activity of GLB191 supernatant against downy mildew. Altogether, this study suggests that GLB191 supernatant could be used as a new biocontrol product against grapevine downy mildew.  相似文献   
284.
285.
The study of protistan functional diversity is crucial to understand the dynamics of oceanic ecological processes. We combined the metabarcoding data of various coastal ecosystems and a newly developed trait-based approach to study the link between taxonomic and functional diversity across marine protistan communities of different size-classes. Environmental DNA was extracted and the V4 18S rDNA genomic region was amplified and sequenced. In parallel, we tried to annotate the operational taxonomic units (OTUs) from our metabarcoding dataset to 30 biological traits using published and accessible information on protists. We then developed a method to study trait correlations across protists (i.e. trade-offs) in order to build the best functional groups. Based on the annotated OTUs and our functional groups, we demonstrated that the functional diversity of marine protist communities varied in parallel with their taxonomic diversity. The coupling between functional and taxonomic diversity was conserved across different protist size classes. However, the smallest size-fraction was characterized by wider taxonomic and functional groups diversity, corroborating the idea that nanoplankton and picoplankton are part of a more stable ecological background on which larger protists and metazoans might develop.  相似文献   
286.
287.
A two‐photon fluorescence lifetime (2P‐FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub‐cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table‐top microscope performances are achieved through a comprehensive system including a home‐designed spectro‐temporal pulse shaper and a custom air‐silica double‐clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 μm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.   相似文献   
288.
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.  相似文献   
289.
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号