首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4893篇
  免费   397篇
  国内免费   3篇
  2024年   5篇
  2023年   31篇
  2022年   99篇
  2021年   150篇
  2020年   83篇
  2019年   97篇
  2018年   105篇
  2017年   95篇
  2016年   183篇
  2015年   293篇
  2014年   329篇
  2013年   363篇
  2012年   462篇
  2011年   405篇
  2010年   275篇
  2009年   231篇
  2008年   308篇
  2007年   303篇
  2006年   270篇
  2005年   231篇
  2004年   223篇
  2003年   243篇
  2002年   194篇
  2001年   30篇
  2000年   21篇
  1999年   35篇
  1998年   43篇
  1997年   26篇
  1996年   26篇
  1995年   19篇
  1994年   14篇
  1993年   19篇
  1992年   21篇
  1991年   8篇
  1990年   2篇
  1989年   9篇
  1988年   2篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1958年   2篇
  1932年   1篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有5293条查询结果,搜索用时 27 毫秒
181.
Empirical evidence suggests that the rich set of ecosystem functions and nature's contributions to people provided by forests depends on tree diversity. Biodiversity–ecosystem functioning research revealed that not only species richness per se but also other facets of tree diversity, such as tree identity, have to be considered to understand the underlying mechanisms. One important ecosystem function in forests is the decomposition of deadwood that plays a vital role in carbon and nutrient cycling and is assumed to be determined by above‐ and belowground interactions. However, the actual influence of tree diversity on wood decay in forests remains inconclusive. Recent studies suggest an important role of microclimate and advocate a systematical consideration of small‐scale environmental conditions. We studied the influence of tree species richness, tree species identity, and microclimatic conditions on wood decomposition in a 12‐year‐old tree diversity experiment in Germany, containing six native species within a tree species richness gradient. We assessed wood mass loss, soil microbial properties, and soil surface temperature in high temporal resolution. Our study shows a significant influence of tree species identity on all three variables. The presence of Scots pine strongly increased wood mass loss, while the presence of Norway spruce decreased it. This could be attributed to structural differences in the litter layer that were modifying the capability of plots to hold the soil surface temperature at night, consequently leading to enhanced decomposition rates in plots with higher nighttime surface temperatures. Therefore, our study confirmed the critical role of microclimate for wood decomposition in forests and showed that soil microbial properties alone were not sufficient to predict wood decay. We conclude that tree diversity effects on ecosystem functions may include different biodiversity facets, such as tree identity, tree traits, and functional and structural diversity, in influencing the abiotic and biotic soil properties.  相似文献   
182.
183.
184.
Engineered materials to improve the shelf-life of desiccated microbial strains are needed for cost-effective bioaugmentation strategies. High temperatures and humidity of legume-growing regions challenge long-term cell stabilization at the desiccated state. A thermostable xeroprotectant core and hydrophobic water vapour barrier shell encapsulation technique was developed to protect desiccated cells from the environment. A trehalose core matrix increased the stability of desiccated Bradyrhizobium by three orders of magnitude over 20 days at 32°C and 50% relative humidity (RH) compared to buffer alone; however, the improvement was not deemed sufficient for a shelf-stable bioproduct. We tested common additives (skim milk, albumin, gelatin and dextran) to increase the glass transition temperature of the desiccated product to provide further stabilization. Albumin increased the glass transition temperature of the trehalose-based core by 40°C and stabilized desiccated Bradyrhizobium for 4 months during storage at high temperature (32°C) and moderate humidity (50% RH) with only 1 log loss of viability. Although the albumin-trehalose core provided exceptional protection against high temperature, it was ineffective at higher humidity conditions (75%). We therefore incorporated a paraffin shell, which protected desiccated cells against 75% RH providing proof of concept that core and shell encapsulation is an effective strategy to stabilize desiccated cells.  相似文献   
185.
MSH4 and MSH5 are members of the MutS homolog family, a conserved group of proteins involved in DNA mismatch correction and homologous recombination. Although several studies have provided compelling evidences suggesting that MSH4 and MSH5 could act together in early and late stages of meiotic recombination, their precise roles are poorly understood and recent findings suggest that the human MSH4 protein may also exert a cytoplasmic function. Here we show that MSH4 is present in the cytoplasm and the nucleus of both testicular cells and transfected somatic cells. Confocal studies on transfected cells provide the first evidence that the subcellular localization of MSH4 is regulated, at least in part, by an active nuclear export pathway dependent on the exportin CRM1. We used deletion mapping and mutagenesis to define two functional nuclear export sequences within the C-terminal part of hMSH4 that mediate nuclear export through the CRM1 pathway. Our results suggest that CRM1 is also involved in MSH5 nuclear export. In addition, we demonstrate that dimerization of MSH4 and MSH5 facilitates their nuclear localization suggesting that dimerization may regulate the intracellular trafficking of these proteins. Our findings suggest that nucleocytoplasmic traffic may constitute a regulatory mechanism for MSH4 and MSH5 functions.  相似文献   
186.
Mutations of pigment type switching have provided basic insight into melanocortin physiology and evolutionary adaptation. In all vertebrates that have been studied to date, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls the switch between synthesis of red-yellow pheomelanin vs. black-brown eumelanin. However, in domestic dogs, historical studies based on pedigree and segregation analysis have suggested that the pigment type-switching system is more complicated and fundamentally different from other mammals. Using a genomewide linkage scan on a Labrador x greyhound cross segregating for black, yellow, and brindle coat colors, we demonstrate that pigment type switching is controlled by an additional gene, the K locus. Our results reveal three alleles with a dominance order of black (K(B)) > brindle (k(br)) > yellow (k(y)), whose genetic map position on dog chromosome 16 is distinct from the predicted location of other pigmentation genes. Interaction studies reveal that Mc1r is epistatic to variation at Agouti or K and that the epistatic relationship between Agouti and K depends on the alleles being tested. These findings suggest a molecular model for a new component of the melanocortin signaling pathway and reveal how coat-color patterns and pigmentary diversity have been shaped by recent selection.  相似文献   
187.
UCP2 is a mitochondrial transporter with an unusual very short half-life   总被引:3,自引:0,他引:3  
This study focused on the stability of UCP2 (uncoupling protein 2), a mitochondrial carrier located in the inner membrane of mitochondrion. UCP2 is very unstable, with a half-life close to 30min, compared to 30h for its homologue UCP1, a difference that may highlight different physiological functions. Heat production by UCP1 in brown adipocytes is generally a long and adaptive phenomenon, whereas control of mitochondrial ROS by UCP2 needs more subtle regulation. We show that a mutation in UCP2 shown to modify its activity, actually decreases its stability.  相似文献   
188.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
189.
NOD2 plays an important role in the innate immunity of the intestinal tract. By sensing the muramyl dipeptide (MDP), a bacterial wall component, NOD2 triggers the NF-kappaB signaling pathway and promotes the release of proinflammatory cytokines such as interleukin-8. Mutations in Nod2 (1007FS, R702W, G908R) impinge on NOD2 functions and are associated with the pathogenesis of Crohn disease, a chronic inflammatory bowel disease. Although NOD2 is usually described as a cytosolic receptor for MDP, the protein is also localized at the plasma membrane, and the 1007FS mutation delocalizes NOD2 to the cytoplasm (Barnich, N., Aguirre, J. E., Reinecker, H. C., Xavier, R., and Podolsky, D. K. (2005) J. Cell Biol. 170, 21-26; McDonald, C., Chen, F. F., Ollendorff, V., Ogura, Y., Marchetto, S., Lecine, P., Borg, J. P., and Nunez, G. (2005) J. Biol. Chem. 280, 40301-40309). In this study, we demonstrate that membrane-bound versions of NOD2 and Crohn disease-associated mutants R702W and G908R are capable of responding to MDP and activating the NF-kappaB pathway from this location. In contrast, the 1007FS mutant remains unable to respond to MDP from the plasma membrane. We also show that NOD2 promotes the membrane recruitment of RICK, a serine-threonine kinase involved in NF-kappaB activation downstream of NOD2. Furthermore, the artificial attachment of RICK at the plasma membrane provokes a constitutive and strong activation of the NF-kappaB pathway and secretion of interleukin-8 showing that optimal RICK activity depends upon its subcellular localization. Finally, we show that endogenous RICK localizes at the plasma membrane in the THP1 cell line. Thus, our data suggest that NOD2 is responsible for the membrane recruitment of RICK to induce a regulated NF-kappaB signaling and production of proinflammatory cytokines.  相似文献   
190.
This protocol describes an ex vivo three-dimensional coculture system optimized to study the skin regenerative ability of primary human keratinocytes grown at the air-liquid interface on collagen matrices embedded with human dermal fibroblasts. An option for enrichment of keratinocyte stem cells and their progeny using fluorescence-activated cell sorting is also provided. Initially, dermal equivalents, comprising human passaged fibroblasts seeded in a collagen matrix, are grown on porous filters (3 mum) placed in transwells. After 1 week, primary human keratinocytes are seeded on this base. One week later, an air-lift transition is performed, leading to the differentiation of the keratinocytes, which are macroscopically visible as artificial skin after a couple of days. The cultures can be harvested 1 week after the air-lift and processed for immunohistochemistry or gene expression analysis. The overall procedure can be completed in 3 weeks, including the preparation of the dermal equivalent and the seeding of the primary keratinocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号