首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4892篇
  免费   398篇
  国内免费   3篇
  5293篇
  2024年   5篇
  2023年   31篇
  2022年   99篇
  2021年   150篇
  2020年   83篇
  2019年   97篇
  2018年   105篇
  2017年   95篇
  2016年   183篇
  2015年   293篇
  2014年   329篇
  2013年   363篇
  2012年   462篇
  2011年   405篇
  2010年   275篇
  2009年   231篇
  2008年   308篇
  2007年   303篇
  2006年   270篇
  2005年   231篇
  2004年   223篇
  2003年   243篇
  2002年   194篇
  2001年   30篇
  2000年   21篇
  1999年   35篇
  1998年   43篇
  1997年   26篇
  1996年   26篇
  1995年   19篇
  1994年   14篇
  1993年   19篇
  1992年   21篇
  1991年   8篇
  1990年   2篇
  1989年   9篇
  1988年   2篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1958年   2篇
  1932年   1篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有5293条查询结果,搜索用时 15 毫秒
101.
102.
103.
A novel Leuconostoc mesenteroides NRRL B-1299 dextransucrase gene, dsrE, was isolated, sequenced, and cloned in Escherichia coli, and the recombinant enzyme was shown to be an original glucansucrase which catalyses the synthesis of alpha-1,6 and alpha-1,2 linkages. The nucleotide sequence of the dsrE gene consists of an open reading frame of 8,508 bp coding for a 2,835-amino-acid protein with a molecular mass of 313,267 Da. This is twice the average mass of the glucosyltransferases (GTFs) known so far, which is consistent with the presence of an additional catalytic domain located at the carboxy terminus of the protein and of a central glucan-binding domain, which is also significantly longer than in other glucansucrases. From sequence comparison with family 70 and alpha-amylase enzymes, crucial amino acids involved in the catalytic mechanism were identified, and several original sequences located at some highly conserved regions in GTFs were observed in the second catalytic domain.  相似文献   
104.
Biocatalysts are essential for the development of bioprocesses efficient for plant biomass degradation. Previously, a metagenomic clone containing DNA from termite gut microbiota was pinpointed in a functional screening that revealed the presence of arabinofuranosidase activity. Subsequent genetic and bioinformatic analysis revealed that the DNA fragment belonged to a member of the genus Bacteroides and encoded 19 open reading frames (ORFs), and annotation suggested the presence of hypothetical transporter and regulator proteins and others involved in the catabolism of pentose sugar. In this respect and considering the phenotype of the metagenomic clone, it was noted that among the ORFs, there are four putative arabinose-specific glycoside hydrolases, two from family GH43 and two from GH51. In this study, a thorough bioinformatics analysis of the metagenomic clone gene cluster has been performed and the four aforementioned glycoside hydrolases have been characterized. Together, the results provide evidence that the gene cluster is a polysaccharide utilization locus dedicated to the breakdown of the arabinan component in pectin and related substrates. Characterization of the two GH43 and the two GH51 glycoside hydrolases has revealed that each of these enzymes displays specific catalytic capabilities and that when these are combined the enzymes act synergistically, increasing the efficiency of arabinan degradation.  相似文献   
105.
Based on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-healing chronic wounds. Safety was studied using the quality control of the final product (genetic stability, microbiological/mycoplasma/endotoxin contamination) and the in vivo evaluation of adverse events after transplantation. Feasibility was assessed by the ability to reproducibly obtain the final ASC-based product with specific characteristics, the time necessary for graft manufacturing, the capacity to produce enough material to treat the lesion, the surgical handling of the graft, and the ability to manufacture the graft in line with hospital exemption regulations. For 16 patients (one patient did not undergo grafting because of spontaneous bone healing), in-process controls found no microbiological/mycoplasma/endotoxin contamination, no obvious deleterious genomic anomalies, and optimal ASC purity. Each type of graft was reproducibly obtained without significant delay for implantation and surgical handling was always according to the surgical procedure and the implantation site. No serious adverse events were noted for up to 54 months. We demonstrated that autologous ASC transplantation can be considered a safe and feasible therapy tool for extreme clinical indications of ASC properties and physiopathology of disease.  相似文献   
106.
Polyclonal T-cells can be directed against cancer using transmembrane fusion molecules known as chimeric antigen receptors (CARs). Although preclinical studies have provided encouragement, pioneering clinical trials using CAR-based immunotherapy have been disappointing. Key obstacles are the need for robust expansion ex vivo followed by sustained survival of infused T-cells in patients. To address this, we have developed a system to achieve selective proliferation of CAR+ T-cells using IL-4, a cytokine with several pathophysiologic and therapeutic links to cancer. A chimeric cytokine receptor (4αβ) was engineered by fusion of the IL-4 receptor α (IL-4Rα) ectodomain to the βc subunit, used by IL-2 and IL-15. Addition of IL-4 to T-cells that express 4αβ resulted in STAT3/STAT5/ERK phosphorylation and exponential proliferation, mimicking the actions of IL-2. Using receptor-selective IL-4 muteins, partnering of 4αβ with γc was implicated in signal delivery. Next, human T-cells were engineered to co-express 4αβ with a CAR specific for tumor-associated MUC1. These T-cells exhibited an unprecedented capacity to elicit repeated destruction of MUC1-expressing tumor cultures and expanded through several logs in vitro. Despite prolonged culture in IL-4, T-cells retained specificity for target antigen, type 1 polarity, and cytokine dependence. Similar findings were observed using CARs directed against two additional tumor-associated targets, demonstrating generality of application. Furthermore, this system allows rapid ex vivo expansion and enrichment of engineered T-cells from small blood volumes, under GMP-compliant conditions. Together, these findings provide proof of principle for the development of IL-4-enhanced T-cell immunotherapy of cancer.  相似文献   
107.
In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5.  相似文献   
108.
The monoamine transporter of the chromaffin granule membranes can be specifically labeled by the photoaffinity reagent 7-azido-8-[125I]iodoketanserin. The characteristics of the labeled protein have been investigated. Two-dimensional gel electrophoresis of the labeled membranes indicated a MW of about 70,000 and an isoelectric point ranging from 3.8 to 4.6. No clear protein spot was associated with the radioactive material, which migrated between glycoproteins GPII and GPIV. The diffuse aspect of the radioactive material indicated a heterogeneity, which was not modified after a second electrophoresis. This heterogeneity was, at least partially, due to glycosylation of the transporter; neuraminidase treatment increased the protein pI up to 6.3, whereas digestion with N-glycopeptidase markedly decreased the apparent MW, from 70,000 to 50,000. SDS-polyacrylamide gel electrophoresis showed that, at low acrylamide concentrations, the labeled material migrated more rapidly than predicted from the mobility of the markers of molecular weight, a behavior which indicated a marked hydrophobicity of the transporter. The labeled protein was purified to homogeneity by a combination of chromatography on DEAE-cellulose at pH 4.5, on immobilized wheat germ agglutinin, and on hydroxylapatite in the presence of SDS. During this purification, the specific radioactivity was increased by a factor of 300-500, with a yield of 10-20%.  相似文献   
109.
The low density lipoprotein receptor-related protein (LRP1) is a transmembrane receptor that integrates multiple signaling pathways. Its cytoplasmic domain serves as docking sites for several adaptor proteins such as the Src homology 2/α-collagen (ShcA), which also binds to several tyrosine kinase receptors such as the insulin-like growth factor 1 (IGF-1) receptor. However, the physiological significance of the physical interaction between LRP1 and ShcA, and whether this interaction modifies tyrosine kinase receptor signaling, are still unknown. Here we report that LRP1 forms a complex with the IGF-1 receptor, and that LRP1 is required for ShcA to become sensitive to IGF-1 stimulation. Upon IGF-1 treatment, ShcA is tyrosine phosphorylated and translocates to the plasma membrane only in the presence of LRP1. This leads to the recruitment of the growth factor receptor-bound protein 2 (Grb2) to ShcA, and activation of the Ras/MAP kinase pathway. Conversely, in the absence of ShcA, IGF-1 signaling bifurcates toward the Akt/mammalian target of rapamycin pathway and accelerates adipocyte differentiation when cells are stimulated for adipogenesis. These results establish the LRP1-ShcA complex as an essential component in the IGF-1-regulated pathway for MAP kinase and Akt/mammalian target of rapamycin activation, and may help to understand the IGF-1 signaling shift from clonal expansion to growth-arrested cells and differentiation during adipogenesis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号