首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4857篇
  免费   397篇
  国内免费   3篇
  5257篇
  2024年   5篇
  2023年   31篇
  2022年   99篇
  2021年   150篇
  2020年   83篇
  2019年   97篇
  2018年   105篇
  2017年   94篇
  2016年   183篇
  2015年   293篇
  2014年   329篇
  2013年   362篇
  2012年   459篇
  2011年   403篇
  2010年   275篇
  2009年   231篇
  2008年   306篇
  2007年   303篇
  2006年   269篇
  2005年   231篇
  2004年   221篇
  2003年   242篇
  2002年   193篇
  2001年   28篇
  2000年   18篇
  1999年   34篇
  1998年   43篇
  1997年   26篇
  1996年   26篇
  1995年   19篇
  1994年   14篇
  1993年   18篇
  1992年   18篇
  1991年   7篇
  1990年   2篇
  1989年   4篇
  1987年   6篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1958年   2篇
  1945年   1篇
  1944年   1篇
  1934年   1篇
  1932年   1篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
排序方式: 共有5257条查询结果,搜索用时 15 毫秒
31.
32.
Three Yarrowia lipolytica cell wall proteins (YlPir, YlCWP1 and YlCBM) were evaluated for their ability to display the xylanase TxXYN from Thermobacillus xylanilyticus on the cell surface of Y. lipolytica. The fusion proteins were produced in Y. lipolytica JMY1212, a strain engineered for mono-copy chromosomal insertion, and enabling accurate comparison of anchoring systems. The construction using YlPir enabled cell bound xylanase activity to be maximised (71.6 U/g). Although 48% of the activity was released in the supernatant, probably due to proteolysis at the fusion zone, this system is three times more efficient for the anchoring of TxXYN than the YlCWP1 system formerly developed for Y. lipolytica. As far as we know it represents the best displayed xylanase activity ever published. It could be an attractive alternative anchoring system to display enzymes in Y. lipolytica.  相似文献   
33.
Curcumin, the yellow pigment found in turmeric, exhibits potent chemopreventative properties in both in vivo and in vitro cancer models. We hypothesized that this effect may occur via curcumin-mediated changes in enzymes involved in both carcinogen bioactivation and estrogen metabolism. Female Swiss Webster mice were treated with either curcumin (200 mg/kg or 400 mg/kg, p.o.) or vehicle control for 1 or 2 weeks. The results demonstrated that curcumin had no effect on the catalytic activities of ovarian aromatase, hepatic catechol-O-methyltransferase or hepatic UDP-glucuronosyltransferase. However, both doses of curcumin caused a 25% decrease in CYP1A catalytic activity, but not polypeptide levels, following 2 weeks of treatment. Additionally, following 2 weeks of curcumin at 400 mg/kg, there was a 20% decrease in the catalytic activity and a 28% decrease in polypeptide levels of CYP3A. While 2 weeks of curcumin treatment (400 mg/kg) caused a 20% increase in glutathione S-transferase activity, there was no parallel increase in hepatic stores of the co-factor glutathione. In conclusion small changes in CYP1A, CYP3A and GST following long term treatment (2 weeks) suggest that the combination of all three metabolic pathways may play a small role in curcumin's chemopreventative action.  相似文献   
34.
35.
36.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   
37.
The pinewood nematode, Bursaphelenchus xylophilus, native to North America, is the causative agent of pine wilt disease and among the most important invasive forest pests in the East-Asian countries, such as Japan and China. Since 1999, it has been found in Europe in the Iberian Peninsula, where it also causes significant damage. In a previous study, 94 pairs of microsatellite primers have been identified in silico in the pinewood nematode genome. In the present study, specific PCR amplifications and polymorphism tests to validate these loci were performed and 17 microsatellite loci that were suitable for routine analysis of B. xylophilus genetic diversity were selected. The polymorphism of these markers was evaluated on nematodes from four field origins and one laboratory collection strain, all originate from the native area. The number of alleles and the expected heterozygosity varied between 2 and 11 and between 0.039 and 0.777, respectively. First insights into the population genetic structure of B. xylophilus were obtained using clustering and multivariate methods on the genotypes obtained from the field samples. The results showed that the pinewood nematode genetic diversity is spatially structured at the scale of the pine tree and probably at larger scales. The role of dispersal by the insect vector versus human activities in shaping this structure is discussed.  相似文献   
38.
BMP-9 is a potent osteogenic factor; however, its effects on osteoclasts, the bone-resorbing cells, remain unknown. To determine the effects of BMP-9 on osteoclast formation, activity and survival, we used human cord blood monocytes as osteoclast precursors that form multinucleated osteoclasts in the presence of RANKL and M-CSF in long-term cultures. BMP-9 did not affect osteoclast formation, but adding BMP-9 at the end of the culture period significantly increased bone resorption compared to untreated cultures, and reduced both the rate of apoptosis and caspase-9 activity. BMP-9 also significantly downregulated the expression of pro-apoptotic Bid, but only after RANKL and M-CSF, which are both osteoclast survival factors, had been eliminated from the culture medium. To investigate the mechanisms involved in the effects of BMP-9, we first showed that osteoclasts expressed some BMP receptors, including BMPR-IA, BMPR-IB, ALK1, and BMPR-II. We also found that BMP-9 was able to induce the phosphorylation of Smad-1/5/8 and ERK 1/2 proteins, but did not induce p38 phosphorylation. Finally, knocking down the BMPR-II receptor abrogated the BMP-9-induced ERK-signaling, as well as the increase in bone resorption. In conclusion, these results show for the first time that BMP-9 directly affects human osteoclasts, enhancing bone resorption and protecting osteoclasts against apoptosis. BMP-9 signaling in human osteoclasts involves the canonical Smad-1/5/8 pathway, and the ERK pathway.  相似文献   
39.
Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1, and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors or differences in sample purity. Similarly, we observe ∼96% primary-to-model concordance in copy number calls in the high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution, the genome-wide conservation of a patient’s tumor genetics in various pre-clinical models, and therefore supports their use for the development and testing of personalized targeted therapies.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号