首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5321篇
  免费   458篇
  国内免费   3篇
  2023年   28篇
  2022年   89篇
  2021年   153篇
  2020年   89篇
  2019年   100篇
  2018年   113篇
  2017年   99篇
  2016年   194篇
  2015年   303篇
  2014年   345篇
  2013年   377篇
  2012年   476篇
  2011年   420篇
  2010年   292篇
  2009年   240篇
  2008年   322篇
  2007年   323篇
  2006年   288篇
  2005年   240篇
  2004年   238篇
  2003年   257篇
  2002年   202篇
  2001年   41篇
  2000年   30篇
  1999年   45篇
  1998年   45篇
  1997年   30篇
  1996年   34篇
  1995年   26篇
  1994年   15篇
  1993年   20篇
  1992年   33篇
  1991年   18篇
  1990年   12篇
  1989年   18篇
  1988年   8篇
  1987年   11篇
  1986年   6篇
  1985年   14篇
  1984年   15篇
  1983年   15篇
  1981年   9篇
  1980年   14篇
  1979年   13篇
  1978年   7篇
  1975年   6篇
  1974年   9篇
  1973年   6篇
  1971年   11篇
  1944年   10篇
排序方式: 共有5782条查询结果,搜索用时 578 毫秒
981.
982.
983.
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.  相似文献   
984.

Background  

In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails.  相似文献   
985.

Background  

Extensive studies have shown that up-scaling of bioprocesses has a significant impact on the physiology of the microorganisms. Among the factors associated with the fluid dynamics of the bioreactor, concentration gradients induced by loss of the global mixing efficiency associated with the increasing scale is the main phenomena leading to strong physiological modifications at the level of the microbial population. These changes are not fully understood since they involve complex physiological mechanisms. In this work, we intend to investigate, at the single cell level, the expression of the rpoS gene associated with the stress response of E. coli. The cultures of the reporter strain have been performed in a small scale reactor as well as in a series of scaled-down bioreactors able to induce extracellular perturbations with increasing level of magnitude.  相似文献   
986.
987.
In Alzheimer''s disease tauopathy is considered secondary to amyloid, and the duality obscures their relation and the definition of their respective contributions.Transgenic mouse models do not resolve this problem conclusively, i.e. the relative hierarchy of amyloid and tau pathology depends on the actual model and the genes expressed or inactivated. Here, we approached the problem in non-transgenic models by intracerebral injection of adeno-associated viral vectors to express protein tau or amyloid precursor protein in the hippocampus in vivo. AAV-APP mutant caused neuronal accumulation of amyloid peptides, and eventually amyloid plaques at 6 months post-injection, but with only marginal hippocampal cell-death. In contrast, AAV-Tau, either wild-type or mutant P301L, provoked dramatic degeneration of pyramidal neurons in CA1/2 and cortex within weeks. Tau-mediated neurodegeneration proceeded without formation of large fibrillar tau-aggregates or tangles, but with increased expression of cell-cycle markers.We present novel AAV-based models, which demonstrate that protein tau mediates pyramidal neurodegeneration in vivo. The data firmly support the unifying hypothesis that post-mitotic neurons are forced to re-enter the cell-cycle in primary and secondary tauopathies, including Alzheimer''s disease.  相似文献   
988.

Background

The cellular prion protein, PrPC, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrPC in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrPC acts as a cell surface receptor. Besides a ubiquitous signaling function of PrPC, we have described a neuronal specificity pointing to a role of PrPC in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C115-HT) or noradrenergic (1C11NE) derivatives.

Methodology/Principal Findings

The neuronal specificity of PrPC signaling prompted us to search for PrPC partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrPC with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C115-HT and 1C11NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C115-HT and 1C11NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP.

Conclusion/Significance

The identification of a novel PrPC partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrPC and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrPC-laminin interplay. The partnership between TNAP and PrPC in neuronal cells may provide new clues as to the neurospecificity of PrPC function.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号