首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5321篇
  免费   458篇
  国内免费   3篇
  2023年   28篇
  2022年   89篇
  2021年   153篇
  2020年   89篇
  2019年   100篇
  2018年   113篇
  2017年   99篇
  2016年   194篇
  2015年   303篇
  2014年   345篇
  2013年   377篇
  2012年   476篇
  2011年   420篇
  2010年   292篇
  2009年   240篇
  2008年   322篇
  2007年   323篇
  2006年   288篇
  2005年   240篇
  2004年   238篇
  2003年   257篇
  2002年   202篇
  2001年   41篇
  2000年   30篇
  1999年   45篇
  1998年   45篇
  1997年   30篇
  1996年   34篇
  1995年   26篇
  1994年   15篇
  1993年   20篇
  1992年   33篇
  1991年   18篇
  1990年   12篇
  1989年   18篇
  1988年   8篇
  1987年   11篇
  1986年   6篇
  1985年   14篇
  1984年   15篇
  1983年   15篇
  1981年   9篇
  1980年   14篇
  1979年   13篇
  1978年   7篇
  1975年   6篇
  1974年   9篇
  1973年   6篇
  1971年   11篇
  1944年   10篇
排序方式: 共有5782条查询结果,搜索用时 853 毫秒
961.
962.
Heterogeneity in molecular weight and degree of deacetylation (DDA) of chitosans from different sources and preparation methods were studied by fractionating chitosans, using semi-preparative SEC, and then determining molecular weight profiles of fractions by analytical SEC with multi-angle laser light scattering (SEC–MALLS), and degree of deacetylation (DDA) by 1H NMR. Fractionation of two high molecular weight chitosans from different manufacturers, produced fractions that spanned a wide range of molecular weight (number-average Mn), from 65 to 400 kDa in one case, that was not evident when unfractionated material was directly analyzed by SEC providing Mn = 188 kDa and PDI = Mw/Mn = 1.73. In a second case, fractions ranged from 20 to 600 kDa with unfractionated Mn = 145 kDa and PDI = 1.83. Fractionation of low molecular weight chitosans also showed a broad range of molecular weight in the original material, however, the fractions obtained with the TSKgel G4000W column in the Mn range of 5–100 kDa were essentially monodisperse with PDIs between 1.0 and 1.4. The DDA of one low molecular weight chitosan (10 kDa) produced by nitrous acid degradation was dependent on the Mn of the fraction. This semi-preparative fractionation procedure revealed important compositional heterogeneities of chitosans not evident in unfractionated material, and permitted the production of monodisperse low molecular weight chitosans with homogeneous properties.  相似文献   
963.
Social foragers can alternate between searching for food (producer tactic), and searching for other individuals that have located food in order to join them (scrounger tactic). Both tactics yield equal rewards on average, but the rewards generated by producer are more variable. A dynamic variance-sensitive foraging model predicts that social foragers should increase their use of scrounger with increasing energy requirements and/or decreased food availability early in the foraging period. We tested whether natural variation in minimum energy requirements (basal metabolic rate or BMR) is associated with differences in the use of producer–scrounger foraging tactics in female zebra finches Taeniopygia guttata . As predicted by the dynamic variance-sensitive model, high BMR individuals had significantly greater use of the scrounger tactic compared with low BMR individuals. However, we observed no effect of food availability on tactic use, indicating that female zebra finches were not variance-sensitive foragers under our experimental conditions. This study is the first to report that variation in BMR within a species is associated with differences in foraging behaviour. BMR-related differences in scrounger tactic use are consistent with phenotype-dependent tactic use decisions. We suggest that BMR is correlated with another phenotypic trait which itself influences tactic use decisions.  相似文献   
964.
965.
Polycyclic aromatic hydrocarbons such as benzo(a)pyrene (BaP) are toxic environmental contaminants known to regulate gene expression through activation of the aryl hydrocarbon receptor (AhR). In the present study, we demonstrated that acute treatment by BaP markedly increased expression of the NADPH oxidase subunit gene neutrophil cytosolic factor 1 (NCF1)/p47phox in primary human macrophages; NCF1 was similarly up-regulated in alveolar macrophages from BaP-instilled rats. NCF1 induction in BaP-treated human macrophages was prevented by targeting AhR, through its chemical inhibition or small interference RNA-mediated down-modulation of its expression. BaP moreover induced activity of the NCF1 promoter sequence, containing a consensus AhR-related xenobiotic-responsive element (XRE), and electrophoretic mobility shift assays and chromatin immunoprecipitation experiments indicated that BaP-triggered binding of AhR to this XRE. Finally, we showed that BaP exposure resulted in p47phox protein translocation to the plasma membrane and in potentiation of phorbol myristate acetate (PMA)-induced superoxide anion production in macrophages. This BaP priming effect toward NADPH oxidase activity was inhibited by the NADPH oxidase specific inhibitor apocynin and the chemical AhR inhibitor α-naphtoflavone. These results indicated that BaP induced NCF1/p47phox expression and subsequently enhanced superoxide anion production in PMA-treated human macrophages, in an AhR-dependent manner; such an NCF1/NADPH oxidase regulation by polycyclic aromatic hydrocarbons may participate in deleterious effects toward human health triggered by these environmental contaminants, including atherosclerosis and smoking-related diseases.  相似文献   
966.
A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.  相似文献   
967.
968.
The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution.Human and animal fecal pollution of coastal environments affects shellfish and recreational water quality and safety, in addition to causing economic losses from the closure of shellfish harvesting areas and from bathing restrictions (13, 19, 33). Human feces are known to contain human-specific enteric pathogens (3, 18, 28), but animals can also be reservoirs for numerous enteric human pathogens, such as Escherichia coli O157:H17, Salmonella spp., Mycobacterium spp., or Listeria spp., that may persist in the soil or surface waters (6, 8, 22, 24). Among animals, pigs are known to carry human pathogens that are excreted with fecal wastes. There are approximately 125 million pigs in the European Union (EU) and 114 million in North America (12, 36, 48), generating an estimated 100 and 91 million tons of pig slurry per year, respectively (4). France, the third largest pig producer in the EU, with about 23,000 farms, generates 8 to 10 million tons of pig slurry per year. Brittany accounts for 56.1% of the total national pig production on only 6% (27,200 km2) of the French territory, though it has 40% (2,700 km) of the coastline. This production could contaminate the environment when tanks on farms overflow, when slurry or compost is spread onto soils, or to a lesser extent, when lagoon surface waters are used for irrigation (38, 47, 52).Fecal contamination in shellfish harvesting and bathing areas is currently evaluated by the detection and enumeration of culturable facultative-anaerobic bacteria, such as E. coli, enterococci, or fecal coliforms (11), in shellfish and bathing waters (European Directives 2006/113/CE and 2006/7/CE). Pigs are among the potential sources of E. coli inputs to the environment; a pig produces approximately 1 × 107 E. coli bacteria per gram of feces, which corresponds to an E. coli flow rate per day that is 28 times higher than that for one human (16, 34, 55).E. coli is not a good indicator of fecal sources of pollution in water because of its presence in both human and animal feces; therefore, alternative fecal indicators must be used. Microbial source tracking methods (44) are being developed to discriminate between human and nonhuman sources of fecal contamination and to distinguish contamination from different animal species (17, 46, 54). Many of these methods are library dependent, requiring a large number of isolates to be cultured and tested, which is time consuming and labor intensive. For these reasons, library-independent methods are preferred for the detection of host-specific markers.The detection of host-specific Bacteroidales markers is a promising library-independent method and has been used for identifying contamination from human and bovine origins (25, 29, 39, 40, 45). In this study, we selected Bacteroidales 16S rRNA gene markers and real-time PCR to focus on fecal contamination from pigs. To date, only one pig-specific Bacteroidales 16S rRNA gene marker has been developed and used on water samples for the identification of pig fecal contamination by real-time PCR assay (SYBR green) (37). When this pig-specific Bacteroidales marker was tested on a small number of fecal samples (n = 16), it showed some cross-reaction with human and cow feces.The present study investigated pig fecal contamination in a French catchment, the Daoulas estuary (Brittany), which has commercial and recreational shellfish harvesting areas and which is potentially subject to fecal contamination. The aims of the present study were (i) to design new primers for the detection and quantification of pig-specific Bacteroidales 16S rRNA genes by TaqMan analysis; (ii) to validate the sensitivity and specificity of the new primers and TaqMan assay using target (feces, slurry, compost, and lagoon water samples) and nontarget (human and other animal sources) DNA, respectively; and (iii) to evaluate the TaqMan assay for proper detection and quantitative estimation of pig-associated fecal pollution. The study represents the first application of pig-specific Bacteroidales markers using a TaqMan assay in Europe and included a monitoring study of marker levels throughout the various stages of slurry treatment.  相似文献   
969.
Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO3/H+ exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine β-synthetase motifs in all eukaryotic members of the CLC family is able to interact with ATP. However, interaction of nucleotides with a functional CLC protein has not been unambiguously demonstrated. Here we show that ATP reversibly inhibits AtCLCa by interacting with the C-terminal domain. Applying the patch clamp technique to isolated Arabidopsis thaliana vacuoles, we demonstrate that ATP reduces AtCLCa activity with a maximum inhibition of 60%. ATP inhibition of nitrate influx into the vacuole at cytosolic physiological nitrate concentrations suggests that ATP modulation is physiologically relevant. ADP and AMP do not decrease the AtCLCa transport activity; nonetheless, AMP (but not ADP) competes with ATP, preventing inhibition. A molecular model of the C terminus of AtCLCa was built by homology to hCLC5 C terminus. The model predicted the effects of mutations of the ATP binding site on the interaction energy between ATP and AtCLCa that were further confirmed by functional expression of site-directed mutated AtCLCa.Nitrate is among the major nitrogen sources for plants in aerobic soils. It is taken up by root cells through plasma membrane transporters of nitrate-nitrite transporter and peptide transporter families. Once in the cytoplasm it can enter the amino acid biosynthesis pathway (1) or be accumulated in the vacuolar lumen via tonoplast transporters (2).The vacuolar nitrate transporter of the model plant Arabidopsis thaliana, AtCLCa, has been shown to work as an anion/proton antiporter (3, 4), similarly to the bacterial CLCec-1 (5) and human hCLC-4 (6) as well as hCLC-5 (7). However, whereas bacterial and animal CLCs2 transport chloride ions, the AtCLCa antiporter is more selective for nitrate, and therefore, it is able to mediate the accumulation of nitrate into the plant vacuole.Little is known on the modulation of CLC-proteins by nucleotides. The effects of ATP on the ion channel hCLC-1 are a matter of debate (8). Indeed, some reports have shown that ATP inhibits hCLC-1 currents, probably interacting with the C terminus of the protein (911). Conversely, other reports indicate that ATP does not modify the properties of hCLC-1 current (12). This discrepancy has been attributed to the oxidation state of the channel, as ATP would be effective only in the presence of reducing agents (13).The C terminus domain of all eukaryotic CLC proteins has two cystathionine β-synthetase motifs (CBS (14, 15)), each one characterized by a βαββα topology (16, 17). A structural and biochemical study of the hCLC-5 C-terminal part demonstrates that this region binds nucleotides (14). However, the effect of ATP binding on the transport activity of hCLC-5 is still unknown.The presence of analogous CBS domains in the C terminus of the AtCLCa antiporter suggested the hypothesis that ATP binds to this plant transporter and modulates its transport activity. Hence, we undertook a functional analysis of the effect of adenosine nucleotides on AtCLCa and found that ATP inhibits the AtCLCa-mediated transport. Based on a homology model of the C terminus of the channel, we identified two residues that would be putatively involved in the protein-nucleotide interaction.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号