全文获取类型
收费全文 | 4895篇 |
免费 | 402篇 |
国内免费 | 3篇 |
专业分类
5300篇 |
出版年
2024年 | 5篇 |
2023年 | 32篇 |
2022年 | 99篇 |
2021年 | 151篇 |
2020年 | 83篇 |
2019年 | 97篇 |
2018年 | 106篇 |
2017年 | 94篇 |
2016年 | 184篇 |
2015年 | 296篇 |
2014年 | 329篇 |
2013年 | 363篇 |
2012年 | 462篇 |
2011年 | 405篇 |
2010年 | 278篇 |
2009年 | 232篇 |
2008年 | 309篇 |
2007年 | 308篇 |
2006年 | 272篇 |
2005年 | 233篇 |
2004年 | 223篇 |
2003年 | 243篇 |
2002年 | 195篇 |
2001年 | 29篇 |
2000年 | 18篇 |
1999年 | 35篇 |
1998年 | 43篇 |
1997年 | 26篇 |
1996年 | 26篇 |
1995年 | 19篇 |
1994年 | 14篇 |
1993年 | 18篇 |
1992年 | 18篇 |
1991年 | 8篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1987年 | 7篇 |
1985年 | 3篇 |
1983年 | 3篇 |
1980年 | 3篇 |
1979年 | 2篇 |
1977年 | 2篇 |
1975年 | 2篇 |
1958年 | 2篇 |
1944年 | 1篇 |
1934年 | 1篇 |
1932年 | 1篇 |
1931年 | 2篇 |
1929年 | 1篇 |
1928年 | 1篇 |
排序方式: 共有5300条查询结果,搜索用时 15 毫秒
121.
Tommy Pacana Sophie Cazanave Aurora Verdianelli Vaishali Patel Hae-Ki Min Faridoddin Mirshahi Eoin Quinlivan Arun J. Sanyal 《PloS one》2015,10(8)
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation. 相似文献
122.
Sophie Seigneurin-Venin Elaine Parrish Isabelle Marty François Rieger Georges Romey Michel Villaz Luis Garcia 《Experimental cell research》1996,223(2):301
The process of myoblast fusion during skeletal myogenesis is calcium regulated. Both dihydropyridine receptor and ryanodine receptor are already present on muscle precursors, at the prefusional stage, before they are required for excitation–contraction coupling. Previous pharmacological studies have shown the need for a special pool of Ca2+associated with the membrane for the fusion process to occur. We hypothesized that this pool of Ca2+is mobilized via a machinery similar to that involved in excitation–contraction coupling. The process of fusion in rat L6 muscle precursors was either totally or partially abolished in the presence of the L-type calcium channel inhibitors SR33557 and nifedipine (half inhibition towards 2 μM), respectively. The inhibition was reversible and dose-dependent. Drugs able to deplete internal calcium stores (caffeine, ryanodine, and thapsigargin) were also tested on the fusion. Both caffeine and thapsigargin drastically inhibited fusion whereas ryanodine had no effect. This suggests that fusion may be controlled by internal pools of Ca2+but that its regulation may be insensitive to ryanodine. We presumed that an early form of the ryanodine receptor may exist, with different pharmacological properties than the adult forms. Indeed, Western blot analysis of pre- and postfusional L6 cells demonstrated the presence, at the prefusional stage, of a transient form of the ryanodine receptor protein with an apparent molecular weight slightly different from those of the classical skeletal and cardiac forms. Taken together, these results support the hypothesis that the fusion process is driven by a mechanism involving both the dihydropyridine receptor (α1 subunit of the L-type Ca2+channel) and the internal stores of Ca2+. The machinery underlying this mechanism might consist of slightly different forms of the classic molecules that in adult muscle ensure excitation–contraction coupling. It remains to be seen, however, whether the mobilization of the internal pool of Ca2+is triggered by the type of mechanism already described in skeletal muscle. 相似文献
123.
Othman Al Musaimi Sophie V. Morse Lucia Lombardi Simona Serban Alessandra Basso Daryl R. Williams 《Journal of peptide science》2023,29(2):e3448
Successful manual synthesis of the TD2.2 peptide acting as a blood–brain barrier shuttle was achieved. TD2.2 was successfully synthesised by sequential condensation of four protected peptide fragments on solid-phase settings, after several unsuccessful attempts using the stepwise approach. These fragments were chosen to minimise the number of demanding amino acids (in terms of coupling, Fmoc removal) in each fragment that are expected to hamper the overall synthetic process. Thus, the hydrophobic amino acids as well as Arg(Pbf) were strategically spread over multiple fragments rather than having them congested in one fragment. This study shows how a peptide that shows big challenges in the synthesis using the common stepwise elongation methodology can be synthesised with an acceptable purity. It also emphasises that choosing the right fragment with certain amino acid constituents is key for a successful synthesis. It is worth highlighting that lower amounts of reagents were required to synthesise the final peptide with an identical purity to that obtained by the automatic synthesiser. 相似文献
124.
Claire Périlleux Alexandra Pieltain Guillaume Jacquemin Frédéric Bouché Nathalie Detry Maria D'Aloia Laura Thiry Pierre Aljochim Martin Delansnay Anne‐Sophie Mathieu Stanley Lutts Pierre Tocquin 《The Plant journal : for cell and molecular biology》2013,75(3):390-402
Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT‐PCR and named FLC‐LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over‐expression of CiFL1 in Arabidopsis caused late flowering and prevented up‐regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post‐vernalization temperature was favorable to flowering and when it de‐vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re‐activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold‐induced down‐regulation of a MADS box floral repressor and its re‐activation by high temperature thus appear to be conserved features of the vernalization and de‐vernalization responses in distant species. 相似文献
125.
The two‐component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis‐induced ROS accumulation 下载免费PDF全文
126.
Proteins that contain a distinct knot in their native structure are impressive examples of biological self-organization. Although this topological complexity does not appear to cause a folding problem, the mechanisms by which such knotted proteins form are unknown. We found that the fusion of an additional protein domain to either the amino terminus, the carboxy terminus, or to both termini of two small knotted proteins did not affect their ability to knot. The multidomain constructs remained able to fold to structures previously thought unfeasible, some representing the deepest protein knots known. By examining the folding kinetics of these fusion proteins, we found evidence to suggest that knotting is not rate limiting during folding, but instead occurs in a denatured-like state. These studies offer experimental insights into when knot formation occurs in natural proteins and demonstrate that early folding events can lead to diverse and sometimes unexpected protein topologies. 相似文献
127.
Cheung AM Tile L Lee Y Tomlinson G Hawker G Scher J Hu H Vieth R Thompson L Jamal S Josse R 《PLoS medicine》2008,5(10):e196-12
Background
Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.Methods and Findings
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by −1.28% and −1.22% (p = 0.84) (difference of −0.06%; 95% confidence interval [CI] −0.67% to 0.54%) at the lumbar spine and −0.69% and −0.88% (p = 0.51) (difference of 0.19%; 95% CI −0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.Conclusions
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers. Trial registration: ClinicalTrials.gov (#) and Current Controlled Trials ( NCT00150969#ISRCTN61708241) 相似文献128.
Jon Nissen-Meyer Camilla Oppegård Per Rogne Helen Sophie Haugen Per Eugen Kristiansen 《Probiotics and antimicrobial proteins》2010,2(1):52-60
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death. 相似文献
129.
HeLa cell line stably transfected with the tat gene from human immunodeficiency virus type 1 has a decreased antioxidant potential. In this work, we used this model to investigate the effect of a high glucose level (20 mM) on the glucose induced cytotoxicity and on the antioxidant system. In comparison to cell culture under control medium, HeLa-wild cell cultured under 20 mM glucose did not exhibit necrosis or apoptosis, contrary to HeLa-tat cell presenting a significant increase in necrotic or apoptotic state. Moreover after 48 h culture under high glucose level the HeLa-tat proliferation rate was not higher than the one of HeLa-wild cells. In HeLa-wild cell high glucose level resulted in an induction of glutathione reductase activity in opposition to HeLa-tat cells where no change was observed. High glucose level resulted in 20% increase in GSSG/GSH ratio in HeLa-wild cells and 38% increase in HeLa-tat cells. Moreover, high glucose level resulted in a dramatic cytosolic thiol decrease and an important lipid peroxidation in HeLa-tat cells. No significant change of these two parameters was observed in HeLa-wild cells. In both cell lines, high glucose resulted in an increase of total SOD activity, as a consequence of the increase in Cu,Zn-SOD activity. High glucose did not result in an increase of Mn-SOD activity in both cell lines. As a consequence of tat tranfection Mn-SOD activity was 50% lower in HeLa-tat cells in comparison to HeLa-wild cells. This work emphasizes the importance of the antioxidant system in the glucose induced cytotoxicity. 相似文献
130.
Bayesian multisensory integration and cross-modal spatial links. 总被引:2,自引:0,他引:2
Our perception of the word is the result of combining information between several senses, such as vision, audition and proprioception. These sensory modalities use widely different frames of reference to represent the properties and locations of object. Moreover, multisensory cues come with different degrees of reliability, and the reliability of a given cue can change in different contexts. The Bayesian framework--which we describe in this review--provides an optimal solution to deal with this issue of combining cues that are not equally reliable. However, this approach does not address the issue of frames of references. We show that this problem can be solved by creating cross-modal spatial links in basis function networks. Finally, we show how the basis function approach can be combined with the Bayesian framework to yield networks that can perform optimal multisensory combination. On the basis of this theory, we argue that multisensory integration is a dialogue between sensory modalities rather that the convergence of all sensory information onto a supra-modal area. 相似文献