首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1225篇
  免费   93篇
  2023年   8篇
  2022年   31篇
  2021年   58篇
  2020年   28篇
  2019年   25篇
  2018年   35篇
  2017年   23篇
  2016年   52篇
  2015年   66篇
  2014年   77篇
  2013年   95篇
  2012年   124篇
  2011年   108篇
  2010年   68篇
  2009年   45篇
  2008年   65篇
  2007年   63篇
  2006年   67篇
  2005年   61篇
  2004年   59篇
  2003年   43篇
  2002年   28篇
  2001年   7篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1941年   2篇
  1938年   1篇
  1937年   2篇
  1934年   1篇
  1888年   1篇
排序方式: 共有1318条查询结果,搜索用时 484 毫秒
991.
Suramin induces misfolding of the cellular prion protein (PrP(C)) and interferes with the propagation of infectious scrapie prions. A mechanistic analysis of this effect revealed that suramin-induced misfolding occurs at the plasma membrane and is dependent on the proximal region of the C-terminal domain (aa 90-158) of PrP(C). The conformational transition induces rapid internalization, mediated by the unstructured N-terminal domain, and subsequent intracellular degradation of PrP(C). As a consequence, PrP Delta N adopts a misfolded conformation at the plasma membrane; however, internalization is significantly delayed. We also found that misfolding and intracellular retention of PrP(C) can be induced by copper and that, moreover, copper interferes with the propagation of the pathogenic prion protein (PrP(Sc)) in scrapie-infected N2a cells. Our study revealed a quality control pathway for aberrant PrP conformers present at the plasma membrane and identified distinct PrP domains involved.  相似文献   
992.
The production of activated carbon from bagasse and rice husk by a single-stage chemical activation method in short retention times (30-60min) was examined in this study. The raw materials were subjected to a chemical pretreatment and were fed to the reactor in the form of a paste (75% moisture). Chemicals examined were ZnCl2, NaOH and H3PO4, for temperatures of 600, 700 and 800 degrees C. Of the three chemical reagents under evaluation only ZnCl2 produced activated carbons with high surface areas. BET surface areas for rice husk were up to 750m2/g for 1:1 ZnCl2:rice husk ratio. BET surface areas for bagasse were up to 674m2/g for 0.75:1 ZnCl2:bagasse ratio. Results were compared to regular two-stage physical activation methods.  相似文献   
993.
The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs), vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method) was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a) statistical significance (BLAST e-value, domain length etc.), (b) their involvement in crucial metabolic pathways, and (c) their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns.  相似文献   
994.
995.
Bacteria and archaea are characterized by an amazing metabolic diversity, which allows them to persist in diverse and often extreme habitats. Apart from oxygenic photosynthesis and oxidative phosphorylation, well-studied processes from chloroplasts and mitochondria of plants and animals, prokaryotes utilize various chemo- or lithotrophic modes, such as anoxygenic photosynthesis, iron oxidation and reduction, sulfate reduction, and methanogenesis. Most bioenergetic pathways have a similar general structure, with an electron transport chain composed of protein complexes acting as electron donors and acceptors, as well as a central cytochrome complex, mobile electron carriers, and an ATP synthase. While each pathway has been studied in considerable detail in isolation, not much is known about their relative evolutionary relationships. Wanting to address how this metabolic diversity evolved, we mapped the distribution of nine bioenergetic modes on a phylogenetic tree based on 16S rRNA sequences from 272 species representing the full diversity of prokaryotic lineages. This highlights the patchy distribution of many pathways across different lineages, and suggests either up to 26 independent origins or 17 horizontal gene transfer events. Next, we used comparative genomics and phylogenetic analysis of all subunits of the F0F1 ATP synthase, common to most bacterial lineages regardless of their bioenergetic mode. Our results indicate an ancient origin of this protein complex, and no clustering based on bioenergetic mode, which suggests that no special modifications are needed for the ATP synthase to work with different electron transport chains. Moreover, examination of the ATP synthase genetic locus indicates various gene rearrangements in the different bacterial lineages, ancient duplications of atpI and of the beta subunit of the F0 subcomplex, as well as more recent stochastic lineage-specific and species-specific duplications of all subunits. We discuss the implications of the overall pattern of conservation and flexibility of the F0F1 ATP synthase genetic locus.  相似文献   
996.

Background  

S100B protein and Neuron Specific Enolase (NSE) can increase due to brain cell damage and/or increased permeability of the blood-brain-barrier. Elevation of these proteins has been shown after various neurological diseases with cognitive dysfunction. Delirium is characterized by temporal cognitive deficits and is an important risk factor for dementia. The aim of this study was to compare the level of S100B and NSE of patients before, during and after delirium with patients without delirium and investigate the possible associations with different subtypes of delirium.  相似文献   
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号