首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3943篇
  免费   305篇
  国内免费   3篇
  2024年   3篇
  2023年   14篇
  2022年   19篇
  2021年   96篇
  2020年   65篇
  2019年   81篇
  2018年   97篇
  2017年   86篇
  2016年   159篇
  2015年   239篇
  2014年   254篇
  2013年   270篇
  2012年   350篇
  2011年   331篇
  2010年   229篇
  2009年   202篇
  2008年   267篇
  2007年   230篇
  2006年   204篇
  2005年   207篇
  2004年   225篇
  2003年   175篇
  2002年   153篇
  2001年   36篇
  2000年   28篇
  1999年   40篇
  1998年   37篇
  1997年   39篇
  1996年   25篇
  1995年   14篇
  1994年   20篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1973年   2篇
排序方式: 共有4251条查询结果,搜索用时 15 毫秒
51.
Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNF-α production in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNF-α production. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNF-α production in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.  相似文献   
52.
A hybrid supercapacitor with high energy and power densities is reported. It comprises a composite anode of anatase TiO2 and reduced graphene oxide and an activated carbon cathode in a non‐aqueous electrolyte. While intercalation compounds can provide high energy typically at the expense of power, the anatase TiO2 nanoparticles are able to sustain both high energy and power in the hybrid supercapacitor. At a voltage range from 1.0 to 3.0 V, 42 W h kg?1 of energy is achieved at 800 W kg?1. Even at a 4‐s charge/discharge rate, an energy density as high as 8.9 W h kg?1 can be retained. The high energy and power of this hybrid supercapacitor bridges the gap between conventional batteries with high energy and low power and supercapacitors with high power and low energy.  相似文献   
53.
54.
In the present study, we established a genetic system for manipulating the oleaginous heterotrophic microalgae Aurantiochytrium sp. KRS101, using cycloheximide resistance as the selectable marker. The gene encoding ribosomal protein L44 (RPL44) of Aurantiochytrium sp. KRS101 was first identified and characterized. Proline 56 was replaced with glutamine, affording cycloheximide resistance to strains encoding the mutant protein. This resistance served as a novel selection marker. The gene encoding the Δ12-fatty acid desaturase of Mortierella alpina, used as a reporter, was successfully introduced into chromosomal DNA of Aurantiochytrium sp. KRS101 via 18S rDNA-targeted homologous recombination. Enzymatic conversion of oleic acid (C18:1) to linoleic acid (C18:2) was detected in transformants but not in the wild-type strain.  相似文献   
55.
In this work, we fabricated highly aligned electrospun poly(ε-caprolactone)(PCL)/collagen biocomposites, which were consisted of multi-layered structure. The aligned directions of the composites were controlled with two rotating collectors, and various weight fractions (1, 2, 3 wt%) of collagen were embedded between the mat of PCL microfibers to improve the mechanical property and biological activities of osteoblast-like cells (MG63). The PCL/collagen biocomposite showed nine times of increment in mechanical strength of random PCL/collagen composite. An increase in collagen content in the biocomposites displayed significant increase of mechanical properties, hydrophilic property, water-absorption ability, and even cell viability of osteoblast-like cells (MG63).  相似文献   
56.
Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions.  相似文献   
57.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
58.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
59.
In spite of the general concept that herbal supplements are safe, there is a lack of appropriate quality control measures and regulations that often culminates in serious undesirable effects such as allergic reactions and renal and liver damage. Thus, there is a growing need to establish a suitable methodology that enables authentication and quality assurance of herbal products. The root of Panax ginseng C. A. Meyer (Araliaceae), commonly called ginseng, is traditionally recognized as a prominent herbal medicine in Far East Asia. There are two types of processed ginseng, white and red ginseng, based on processing methods, and these play a significant role in modifying ginsenosides, which are the major bioactive metabolites in these products. Herein we purify and characterize a new ginsenoside, 20(R)-ginsenoside Rf, utilizing NMR, UPLC-ESI-Q-TOF-MS and validate the metabolite is generated from its epimer, 20(S)-ginsenoside Rf during the steaming process to manufacture red ginseng. We further propose a relevant mechanism for the chemical conversion. This finding updates chemical profiling of ginseng products that can be employed in quality assurance and authentication.  相似文献   
60.

Objective

Progranulin and C1q/TNF-related protein-3 (CTRP3) were recently discovered as novel adipokines which may link obesity with altered regulation of glucose metabolism, chronic inflammation and insulin resistance.

Research Design and Methods

We examined circulating progranulin and CTRP3 concentrations in 127 subjects with (n = 44) or without metabolic syndrome (n = 83). Furthermore, we evaluated the relationship of progranulin and CTRP3 levels with inflammatory markers and cardiometabolic risk factors, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), estimated glomerular filtration rate (eGFR), and adiponectin serum concentrations, as well as carotid intima-media thickness (CIMT).

Results

Circulating progranulin levels are significantly related with inflammatory markers, hsCRP (r = 0.30, P = 0.001) and IL-6 (r = 0.30, P = 0.001), whereas CTRP3 concentrations exhibit a significant association with cardiometabolic risk factors, including waist circumference (r = −0.21), diastolic blood pressure (r = −0.21), fasting glucose (r = −0.20), triglyceride (r = −0.34), total cholesterol (r = −0.25), eGFR (r = 0.39) and adiponectin (r = 0.26) levels. Serum progranulin concentrations were higher in patients with metabolic syndrome than those of the control group (199.55 [179.33, 215.53] vs. 185.10 [160.30, 204.90], P = 0.051) and the number of metabolic syndrome components had a significant positive correlation with progranulin levels (r = 0.227, P = 0.010). In multiple regression analysis, IL-6 and triglyceride levels were significant predictors of serum progranulin levels (R 2 = 0.251). Furthermore, serum progranulin level was an independent predictor for increased CIMT in subjects without metabolic syndrome after adjusting for other cardiovascular risk factors (R 2 = 0.365).

Conclusions

Serum progranulin levels are significantly associated with systemic inflammatory markers and were an independent predictor for atherosclerosis in subjects without metabolic syndrome.

Trial Registration

ClinicalTrials.gov NCT01668888  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号