首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3943篇
  免费   305篇
  国内免费   3篇
  2024年   3篇
  2023年   14篇
  2022年   19篇
  2021年   96篇
  2020年   65篇
  2019年   81篇
  2018年   97篇
  2017年   86篇
  2016年   159篇
  2015年   239篇
  2014年   254篇
  2013年   270篇
  2012年   350篇
  2011年   331篇
  2010年   229篇
  2009年   202篇
  2008年   267篇
  2007年   230篇
  2006年   204篇
  2005年   207篇
  2004年   225篇
  2003年   175篇
  2002年   153篇
  2001年   36篇
  2000年   28篇
  1999年   40篇
  1998年   37篇
  1997年   39篇
  1996年   25篇
  1995年   14篇
  1994年   20篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1973年   2篇
排序方式: 共有4251条查询结果,搜索用时 15 毫秒
21.
Fifty-nine species of marine macrophytes from the coasts of British Columbia, Canada and Korea have been screened for the presence of PCR inhibitors, namely inhibitors of Taq DNA polymerase. Eleven of the species displayed some inhibitor activity. At the concentration of 5 μg of methanol extract in 25μL reaction mixture of PCR containing 1.5 unit of Taq DNA polymerase, one (Ulva sp.) of 8 Chlorophyta, eight (Colpomenia bullosa, Ecklonia cava, Endarachne binghamiae, Fucus distichus, Hizikia fusiformis, Sargassum confusum, Sargassum sagamianum, and Sargassum thunbergii) of 28 Phaeophyta, and one (Symphyocladia latiuscula) of 34 Rhodophyta showed inhibition in PCR amplification. In the case of the water extract, two (Cladophora columbiana, Ulva sp.) Chlorophyta, seven (Endarachne binghamiae, Fucus distichus, Hizikia fusiformis, Sargassum confusum, Sargassum sagamianum, Sargassum horneri, Scytosiphon dotyi) Phaeophyta, no Rhodophyta and one (Phyllospadix scouleri) seagrass showed inhibition in PCR amplification. the methanol fraction of Sargassum confusum and the water fraction of Fucus gardneri (mid–intertidal) have been found to inhibit PCR at level as low as 0.5 μg in 25μL of PCR reaction mixture. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
22.
Four mutants that show the delayed leaf senescence phenotype were isolated from Arabidopsis thaliana . Genetic analyses revealed that they are all monogenic recessive mutations and fall into three complementation groups, identifying three genetic loci controlling leaf senescence in Arabidopsis . Mutations in these loci cause delay in all senescence parameters examined, including chlorophyll content, photochemical efficiency of photosystem II, relative amount of the large subunit of Rubisco, and RNase and peroxidase activity. Delay of the senescence symptoms was observed during both age-dependent in planta senescence and dark-induced artificial senescence in all of the mutant plants. The results indicate that the three genes defined by the mutations are key genetic elements controlling functional leaf senescence and provide decisive genetic evidence that leaf senescence is a genetically programmed phenomenon controlled by several monogenic loci in Arabidopsis . The results further suggest that the three genes function at a common step of age-dependent and dark-induced senescence processes. It is further shown that one of the mutations is allelic to ein2-1 , an ethylene-insensitive mutation, confirming the role of ethylene signal transduction pathway in leaf senescence of Arabidopsis .  相似文献   
23.
Human β-endorphin administered intracisternally in a dose of 15 μg per rat increased striatal concentrations of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as well as producing catalepsy. These effects were inhibited by naloxone. Pargyline-induced decreases in striatal DOPAC and HVA were greater in endorphin-treated than in saline-treated animals, supporting the concept that β-endorphin increases striatal dopamine turnover. β-endorphin increased the rate of decline in striatal dopamine concentration following synthesis inhibition with α-methyltyrosine, further suggesting that endorphin increases striatal dopamine turnover. β-endorphin and probenecid interacted competitively to decrease the effects of each other to increase striatal HVA. Naloxone prevented the effect of endorphin to decrease the HVA response to probenecid. Thus, probenecid cannot be used to assess the effects of endorphin on striatal dopamine turnover. If β-endorphin acts presynaptically to decrease dopamine release in striatum, the increases in striatal DOPAC and HVA probably represent a compensatory attempt to increase dopamine synthesis. Although turnover of dopamine to its metabolites is increased, dopamine release may be suppressed by β-endorphin.  相似文献   
24.
Summary Fed-batch culture was carried out to increase cell mass followed by batch culture for spore production ofbacillus thuringiensis. High cell mass obtained by increasing the feeding glucose concentration in constant fed-batch culture which supported fast cell growth resulted in good sporulation during subsequent batch culture, and the maximum cell mass of 72.6 g/L and spore concentration of 1.25×1010 spores/mL could be obtained.  相似文献   
25.
Summary A mutant strain lacking in activity of L-cysteine desulfhydrase, a L-cysteine-decomposing enzyme, was screened after UV-treatment ofPseudomonas sp. CU6. The properties of the two strains, original and mutant, were compared on the basis of parameter values estimated from kinetic simulations of the enzymatic formation of L-cysteine from D,L-ATC. Both strains suffered from product inhibition, though inhibition was less for the mutant strain.  相似文献   
26.
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.  相似文献   
27.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
28.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
29.
30.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号