首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   69篇
  国内免费   1篇
  1111篇
  2023年   3篇
  2022年   18篇
  2021年   28篇
  2020年   12篇
  2019年   11篇
  2018年   16篇
  2017年   22篇
  2016年   40篇
  2015年   57篇
  2014年   61篇
  2013年   64篇
  2012年   95篇
  2011年   87篇
  2010年   46篇
  2009年   28篇
  2008年   41篇
  2007年   49篇
  2006年   49篇
  2005年   46篇
  2004年   41篇
  2003年   45篇
  2002年   42篇
  2001年   9篇
  2000年   12篇
  1999年   17篇
  1998年   11篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   9篇
  1985年   12篇
  1984年   5篇
  1982年   9篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
排序方式: 共有1111条查询结果,搜索用时 15 毫秒
71.
Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.  相似文献   
72.
73.
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.  相似文献   
74.
75.
76.
Antibodies produced by an individual without a known history of sensitization to the relevant antigen are called "natural" antibodies. Some natural antibodies, called xenoreactive antibodies, react with the cells of foreign species. Most xenoreactive antibodies in humans and higher primates bind to a nonreducing terminal galactose expressed by pigs and other lower mammals. Although human natural antibodies which bind to one or more of a variety of terminal alpha-galactosyl structures have been identified previously, the antigen recognized by anti-alpha-galactosyl antibodies on the cells of foreign species is thought to be exclusively Galalpha1-3Gal. Thus, anti-alpha-galactosyl antibodies which do not react with Galalpha1-3Gal are thought to be nonxenoreactive. Here, we identify natural antibodies in human serum which bind to Galalpha1-6Hexosepyrranosides but not Galalpha1-3Gal, indicating that these antibodies are not xenoreactive. Various lower mammals were found to have natural anti-Galalpha1-2Gal antibodies in their sera, suggesting that at least some anti-Galalpha1-2Gal antibodies might not be xenoreactive and indicating, surprisingly, that anti-alpha-galactosyl antibodies are much more phylogenetically disperse than previously known. Also surprising was the finding that some natural antibodies which bind to Galalpha1-3Gal in vitro do not bind to porcine xenografts. These studies show that naturally occurring anti-alpha-galactosyl antibodies in mammalian serum include antibodies with a greater variety of reactivities than previously thought, only some of which would bind to a porcine xenograft. Further, these studies show that the methods used to detect anti-alpha-galactosyl antibodies of relevance in xenotransplantation must be carefully evaluated to avoid detection of anti-alpha-galactosyl antibodies which would not bind to a porcine organ and which therefore are not involved in xenograft rejection.  相似文献   
77.
Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization. Both cell types were isolated from peripheral blood of healthy human donors and expanded in culture. We demonstrate that OECs are more infectable and home better to tumors expressing VEGF on systemic administration. Furthermore, we used an adenoviral/retroviral chimeric system to convert OECs to retrovirus-producing cells. When injected systemically into tumor-bearing mice, OECs retain their ability to produce retrovirus and infect surrounding tumor cells. Our data demonstrate that OECs could be efficient carriers for viral delivery to areas of tumor neovascularization.  相似文献   
78.
Disruption of the mouse gene encoding the blood coagulation inhibitor thrombomodulin (Thbd) leads to embryonic lethality caused by an unknown defect in the placenta. We show that the abortion of thrombomodulin-deficient embryos is caused by tissue factor-initiated activation of the blood coagulation cascade at the feto-maternal interface. Activated coagulation factors induce cell death and growth inhibition of placental trophoblast cells by two distinct mechanisms. The death of giant trophoblast cells is caused by conversion of the thrombin substrate fibrinogen to fibrin and subsequent formation of fibrin degradation products. In contrast, the growth arrest of trophoblast cells is not mediated by fibrin, but is a likely result of engagement of protease-activated receptors (PAR)-2 and PAR-4 by coagulation factors. These findings show a new function for the thrombomodulin-protein C system in controlling the growth and survival of trophoblast cells in the placenta. This function is essential for the maintenance of pregnancy.  相似文献   
79.
80.
Due to the limited secondary structure, it is believed that the caseins of milk, particularly the beta-caseins (beta-CN), may be in a mostly random-coil conformation or in various structures that result from random association of hydrophobic residues. However, the self-association of the human proteins with increasing temperature (T) and in the presence of Ca2+ is reproducible, implying that they normally fold into fixed tertiary structures. A nonphosphorylated recombinant human beta-CN with four extra amino acids at the N-terminus (GSHM-) was prepared and studied by laser light scattering, analytical ultracentrifugation, fluorescence spectroscopy, turbidity, and circular dichroism. In 3.3 M urea or at 4 degrees C, the protein was monomeric, as expected. Increasing T both without and with the addition of Ca2+ ions caused self-association as it does for the nonphosphorylated native beta-CN but with a somewhat different interaction pattern. However, returning the protein to its monomeric state by reequilibration at 4 degrees C followed again by increasing T caused a shift in the pattern. Such thermal cycling eventually caused the protein to equilibrate to a particular conformation where no more change could be observed. The resulting interaction pattern was similar to that of the native protein but differed particularly in that there was more extensive self-association for the recombinant mutant. The equilibration to a stable conformation was more rapid in the presence of Ca2+ ions. This suggests that the native protein normally folds into a particular conformation which may be aided by Ca2+ in the mammary gland. Further study of a recombinant form with the native amino acid sequence is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号