首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9716篇
  免费   719篇
  国内免费   144篇
  2024年   8篇
  2023年   35篇
  2022年   122篇
  2021年   199篇
  2020年   183篇
  2019年   208篇
  2018年   296篇
  2017年   218篇
  2016年   415篇
  2015年   569篇
  2014年   679篇
  2013年   711篇
  2012年   881篇
  2011年   847篇
  2010年   528篇
  2009年   489篇
  2008年   618篇
  2007年   555篇
  2006年   549篇
  2005年   424篇
  2004年   461篇
  2003年   345篇
  2002年   316篇
  2001年   163篇
  2000年   126篇
  1999年   110篇
  1998年   46篇
  1997年   57篇
  1996年   38篇
  1995年   30篇
  1994年   27篇
  1993年   25篇
  1992年   34篇
  1991年   33篇
  1990年   34篇
  1989年   36篇
  1988年   16篇
  1987年   17篇
  1986年   8篇
  1985年   12篇
  1984年   10篇
  1982年   6篇
  1978年   10篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1971年   5篇
  1969年   6篇
  1967年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Reactive oxygen species (ROS) act as signaling molecules to regulate various cell functions. Numerous studies have demonstrated ROS to be essential for the differentiation of adipocytes. Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes in mammalian cells. Prx2 is present in the cytoplasm and cell membranes and demonstrates ROS scavenging activity. We focused on Prx2 involvement in regulating adipogenesis and lipid accumulation and demonstrated that Prx2 expression was upregulated during adipocyte differentiation. In addition, the silencing of Prx2 (shPrx2) inhibited adipogenesis by modulating adipogenic gene expression, and cell death was enhanced via increased ROS production in shPrx2‐3T3‐L1 cells. These results demonstrate that shPrx2 triggers adipocyte cell death and weakens adipocyte function via ROS production. Taken together, our data suggest the participation of Prx2 in adipocyte function and differentiation. Our results also imply that the downregulation of Prx2 activity could help prevent obesity. Overall, findings support the development of ROS‐based therapeutic solutions for the treatment of obesity and obesity‐related metabolic disorders.  相似文献   
92.
Primary melanocytes isolated from skin and expanded in culture have been widely used for laboratory research and clinical applications. The conventional method to isolate primary melanocytes from skin usually requires about 3–4 weeks of culture for melanocytes to grow sufficiently to passage. Considering that melanocytes comprise only 3%–7% of epidermal cells in normal human skin, it would be extremely helpful to increase the isolation efficiency and shorten the initial culture time to quickly meet various application needs. Here, we report that adding Y‐27632, a Rho kinase inhibitor, into the initial culture medium for 2 days can dramatically increase the yield of melanocytes. We found that Y‐27632 can promote keratinocyte attachment and survival in the melanocyte culture system, resulting in not only better recovery, but also increased proliferation of melanocytes by a paracrine signaling pathway. More specifically, Y‐27632 significantly induced keratinocyte expression of stem cell factor, which played an important role in enhancing the growth of melanocytes. In summary, Y‐27632 could profoundly enhance the yield of primary melanocytes in the initial culture through paracrine effects on keratinocytes.  相似文献   
93.
Insect growth regulators (IGRs) are effective alternatives to chemical insecticides because of their specificity and low environmental toxicity. Entomopathogenic fungi are an important natural pathogen of insects and have been developed as biological control agents. They produce a wide range of secondary metabolites such as antibiotics, pesticides, growth-promoting or inhibiting compounds and insect attracting agents. In this study, to explore novel IGR substances from entomopathogenic fungi, culture extracts of 189 entomopathogenic fungi isolated from Korean soil samples were investigated for their juvenile hormone (JH)-based IGR activities. Whereas none of the culture extracts exhibited JH agonist (JHA) activity, 14 extracts showed high levels of JH antagonist (JHAN) activity. Among them, culture extract of JEF-145 strain, which was identified as Lecanicillium attenuatum, showed the highest insecticidal against Aedes albopictus and Plutella xylostella. At liquid culture condition, JHAN activity was observed in culture soup rather than mycelial cake, indicating that substances with JHAN activity are released from the JEF-145 strain during culture. Furthermore, while extract from solid cultured JEF-145 strain showed insecticidal activities against both A. albopictus and P. xylostella, that from liquid cultured fungi showed insecticidal activity only against A. albopictus, indicating that L. attenuatum JEF-145 strain produces different kinds of secondary metabolites with JHAN activity depending on culture conditions. These results suggested that JHAN substances derived from entomopathogenic fungi could be usefully exploited to develop novel eco-friendly IGR insecticides.  相似文献   
94.
在2016年和2017年的5—8月,我们对川西马尔康麝场圈养林麝(Moschus berezovskii)的麝香分泌进行了行为与生理监测,对麝香分泌的各阶段进行了准确判定,记录了泌香启动、泌香盛期开始、泌香盛期终止及泌香结束的时间阶段及持续时间长,分析了林麝麝香分泌的时间阶段与体重和年龄等因素的关系。结果表明,马尔康麝场的雄性林麝平均泌香启动日在6月16日[(167.06±7.75)d,n=141],于6月17日进入泌香盛期[(168.52±7.67)d,n=141],6月21日[(172.17±7.26)d, n=138]泌香活动减弱,至6月25日[(176.27±8.11)d, n=131]泌香结束;雄麝体重与其泌香启动、泌香盛期停止及泌香结束时间呈显著负相关(rPS = -0.234,PPS =0.028;r VSF = -0.215,PVSF = 0.047;r SE = -0.229,PSE = 0.043),即雄麝的体重越大,其泌香越早;各年龄组间的平均泌香时长差异显著(F 17, 113 = 3.482, P = 0.003),其中2岁雄麝平均泌香时长最长[(13.07±2.08)d, n=20],显著高于3岁[(9.38±0.76)d, n=12, P = 0.042]和4岁[(7.80±1.60)d, n=5, P = 0.013]个体;马尔康林麝平均泌香量为(11.85g±0.96)g, (n=114),随泌香时长延长有增加趋势,但不显著(P = 0.854)。基于上述林麝雄体的泌香时间、泌香量与年龄和体重等因素间的关联,可对圈养的林麝个体间的泌香力、泌香量等进行区分和预判,作为圈养林麝驯养生产力优化的依据,并可为圈养林麝优质品系的选育提供参考。  相似文献   
95.
96.
97.
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.  相似文献   
98.
Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.  相似文献   
99.
Kim  Juseok  Kim  Joon Yong  Song  Hye Seon  Kim  Yeon Bee  Whon  Tae Woong  Ahn  Seung Woo  Lee  Se Hee  Yoo  SeungRan  Kim  Yu Jin  Myoung  Jinjong  Choi  Yoon-E  Son  Hong-Seok  Roh  Seong Woon 《Antonie van Leeuwenhoek》2021,114(5):507-513

Strain CBA3638T was isolated from the Geum River sediment, Republic of Korea. The cells of strain CBA3638T were Gram-stain-positive, strictly anaerobic, rod-shaped, and 0.5–1.0 μm wide, and 4.0–4.5 μm long. Optimal growth occurred at 37 °C, pH 7.0, and 1.0% (w/v) NaCl. Based on the 16S rRNA gene sequence, the phylogenetic analysis showed that strain CBA3638T belongs to the genus Anaerocolumna in the family Lachnospiraceae, and is most closely related to Anaerocolumna cellulosilytica (94.6–95.0%). The DDH value with A. cellulosilytica SN021T showed 15.0% relatedness. The genome of strain CBA3638T consisted of one circular chromosome that is 5,500,435 bp long with a 36.7 mol% G?+?C content. The genome contained seven 16S-5S-23S rRNA operons and one antibiotic resistance-related transporter gene (mefA). Quinones were not detected. The predominant cellular fatty acids were C16:0 and C14:0 and the polar lipids were diphosphatidylglycerol, phosphatidylcholine, and uncharacterised polar lipids. Based on the polyphasic taxonomic analysis, we propose strain CBA3638T as a novel species in the genus Anaerocolumna, with the name Anaerocolumna sedimenticola sp. nov. The type strain is CBA3638T (=?KACC 21652T?=?DSM 110663T).

  相似文献   
100.
Conservation tillage in conjunction with straw mulching is a sustainable agricultural approach. However, straw mulching reduces the soil temperature, inhibits early maize growth and reduces grain yield in cold regions. To address this problem, we investigated the effects of inoculation of plant growth-promoting rhizobacteria (PGPR) on maize growth and rhizosphere microbial communities under conservation tillage in Northeast China. The PGPR strains Sinorhizobium sp. A15, Bacillus sp. A28, Sphingomonas sp. A55 and Enterobacter sp. P24 were isolated from the maize rhizosphere in the same area and inoculated separately. Inoculation of these strains significantly enhanced maize growth, and the strains A15, A28 and A55 significantly increased grain yield by as much as 22%–29%. Real-time quantitative PCR and high-throughput sequencing showed that separate inoculation with the four strains increased the abundance and species richness of bacteria in the maize rhizosphere. Notably, the relative abundance of Acidobacteria_Subgroup_6, Chloroflexi_KD4-96, and Verrucomicrobiae at the class level and Mucilaginibacter at the genus level were positively correlated with maize biomass and yield. Inoculation with PGPR shows potential for improvement of maize production under conservation tillage in cold regions by regulating the rhizosphere bacterial community structure and by direct stimulation of plant growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号