首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43055篇
  免费   3854篇
  国内免费   1986篇
  2024年   80篇
  2023年   371篇
  2022年   891篇
  2021年   1332篇
  2020年   954篇
  2019年   1209篇
  2018年   1329篇
  2017年   1005篇
  2016年   1582篇
  2015年   2433篇
  2014年   2758篇
  2013年   3023篇
  2012年   3607篇
  2011年   3511篇
  2010年   2168篇
  2009年   1938篇
  2008年   2388篇
  2007年   2208篇
  2006年   2054篇
  2005年   1769篇
  2004年   1709篇
  2003年   1490篇
  2002年   1274篇
  2001年   929篇
  2000年   793篇
  1999年   717篇
  1998年   420篇
  1997年   372篇
  1996年   338篇
  1995年   287篇
  1994年   268篇
  1993年   190篇
  1992年   338篇
  1991年   317篇
  1990年   283篇
  1989年   282篇
  1988年   234篇
  1987年   201篇
  1986年   173篇
  1985年   196篇
  1984年   159篇
  1983年   111篇
  1982年   102篇
  1981年   106篇
  1979年   113篇
  1978年   96篇
  1976年   73篇
  1975年   89篇
  1974年   91篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Summary Deficient arylsulfatase-A activity is diagnostic of a neurodegenerative human lysosomal storage disease, metachromatic leukodystrophy. Paradoxically, similar enzyme deficiency also occurs in normal individuals, who are known as being pseudo arylsulfatase-A deficient. We showed previously that this phenotype is associated with a structural gene mutation that produces an exceptionally labile enzyme. We now report on the nature and consequence of this mutation. When the mutant arylsulfatase-A is deglycosylated by endoglycosidase H, only one smaller molecular species was generated, instead of the two from the normal enzyme. This is consistent with the loss of one of the two N-linked oligosaccharide side chains known to be present on the wild-type enzyme. Quantitative analysis of mannose and leucine incorporation showed that the mutant enzyme incorporated two- to tenfold less mannose than the normal enzyme on a molar basis. This deficient glycosylation was specific to arylsulfatase-A. Another lysosomal enzyme not affected in this mutation, beta-hexosaminidase, was glycosylated normally in the mutant cells. The remaining single oligosaccharide side chain released from the mutant arylsulfatase-A by pronase digestion was normally processed to complex and high-mannose forms. However, the high-mannose side chains contained 30% fewer phosphorylated residues than those of the normal enzyme. Nevertheless, this reduced level of phosphorylation did not prevent targeting of the mutant enzyme to the lysosomes, a process normally mediated through phosphorylated mannose residues. In conclusion, pseudo arylsulfatase-A deficiency is a unique human mutation associated with reduced glycosylation and phosphorylation of a lysosomal enzyme with the loss of one of the two carbohydrate side chains. The mutation results in greatly reduced enzyme stability, thus indicating a role for oligosaccharides in maintaining enzyme stability within the degradative environment of the lysosomes. However, the residual catalytic activity or subcellular targeting of the mutant enzyme was not affected. These properties probably account for the benign clinical presentation of pseudo arylsulfatase-A deficiency.Abbreviations PD Pseudo arylsulfatase-A Deficiency - ARA Arylsulfatase-A  相似文献   
102.
The primary product of hydrolysis of versiconal acetate catalyzed by porcine liver esterase and the 35–70% ammonium sulfate fraction from a soluble extract from mycelia of Aspergillus parasiticus was versiconal. Versiconal was stable at neutral pH for several hours and was rapidly converted to versi-colorin C by treatment with 0.4 M HCl. The addition of NADPH to the 35–70% ammonium sulfate fraction resulted in conversion of versiconal acetate to both versiconal and versicolorin C. The conversion of versiconal acetate to versicolorin C in the cell-free system is proposed to involve an esterase and an NADPH-dependent cyclase.  相似文献   
103.
When growing on a mixture of ammonia and l-glutamate as nitrogen sources, Rhizobium leguminosarum biovar trifolii MNF1000 utilizes ammonia exclusively, while cowpea Rhizobium MNF2030 utilizes both compounds at similar rates. l-Glutamate transport in both strain MNF1000 and MNF2030 is active, giving rise to a 60-fold concentration gradient across the membrane of cells of strain MNF2030. Both strains produce two kinetically distinguishable glutamate transport systems under all conditions of growth — a high affinity system with an apparent K m of 0.06–0.17 M but of relatively low V max, and a low affinity system with a K m of 1.2–6.7\ M, but of higher overall capacity. l-Glutamate transport activity in cells of MNF2030 was relatively insensitive to the presence of ammonia in the growth medium. By contrast, ammonia in the growth medium resulted in low activities of glutamate transport in cells of MNF1000 which were provided with a carbon source, offering one explanation for the failure of this strain to use glutamate in the presence of ammonia. However, in cells of MNF1000 growing on glutamate as sole source of carbon and nitrogen, the glutamate transport system is synthesized, even in the presence of accumulated or added ammonia. This suggests that the regulation of the glutamate permease also depends on availability of carbon source.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   
104.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   
105.
106.
In vitro effect of actinomycin D on human neutrophil function   总被引:1,自引:0,他引:1  
The effect of actinomycin D (ACT-D) on human neutrophil chemotaxis, chemiluminescence (CL), superoxide (O2-) production, phagocytic uptake, and intracellular bacterial killing has been examined. The viability of the ACT-D-treated neutrophils was 98% even at a concentration of 10 micrograms/ml for 4 hr. Using fMLP as the chemotactic factor, depressed chemotaxis was demonstrated following ACT-D (1-10 micrograms/ml) pretreatment of neutrophils as compared with the non-treated controls. Similar ACT-D pretreatment produced the depressed responses in phorbol myristate acetate-induced CL and superoxide production by neutrophils. Moreover, using heat-inactivated human serum as an opsonin for Salmonella enteritidis (NCTC 6676), there was a significant difference in intracellular killing (P less than 0.01) but no difference in phagocytic uptake between ACT-D-treated and non-treated neutrophils. These studies indicate that ACT-D profoundly impairs both intracellular bacterial killing by human neutrophil through an effect on respiratory burst activity and directed cell migration of human neutrophils.  相似文献   
107.
Forty different chiral molecules were studied by liquid chromatography with a Pirkle-type, (R)-N-(3,5-dinitrobenzoyl) phenylglycine (DNBPG), chiral stationary phase column. The dramatic effect of a small molecular change on chiral recognition was demonstrated using DL-amino acid derivatives. The inductive effect on chiral recognition was also studied using trifluoro-, trichloro-, dichloro-, monochloroacetyl, and acetyl derivatives of four different chiral amines. The study of the enantiomer separation of 11 different crown ethers of 2,2′-binaphthyldiyl showed that the rigidity of the chiral center can be an additional parameter in chiral recognition for the DNBPG phase but not for a β-cyclodextrin bonded chiral phase. It is apparent from this study that steric effects, inductive effects, and molecular rigidity play important roles in chiral recognition with DNBPG chiral stationary phases.  相似文献   
108.
Summary Amino acids, including lysine, glutamic acid, and phenylalanine, in pure solution or in fermentation broth, were extracted with the aqueous two-phase system consisting of polyethylene glycol and salts, giving a very sharp separation. The partition is influenced by the type and the amount of salts used, pH and components of the broth.  相似文献   
109.
The yeast rna mutations (rna2 through rna10/11) are a set of temperature-sensitive mutations that result in the accumulation of pre-mRNAs at the nonpermissive temperature. Most of the yeast RNA gene products are involved in and essential for mRNA splicing in vitro, suggesting that they code for components of the splicing machinery. We tested this proposal by using an in vitro-synthesized RNA11 protein to complement the temperature-sensitive defect of the rna11 extract. During the in vitro complementation, the input RNA11 protein was associated with the 40S spliceosome and a 30S complex, suggesting that the RNA11 protein is indeed a component of the spliceosome. The formation of the RNA11-associated 30S complex did not require any exogenous RNA substrate, suggesting that this 30S particle is likely to be a preassembled complex involved in splicing. The RNA11-specific antibody inhibited the mRNA splicing in vitro, confirming the essential role of the RNA11 protein in mRNA splicing. Finally, using the anti-RNA11 antibody, we localized the RNA11 protein to the periphery of the yeast nucleus.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号