首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104570篇
  免费   1125篇
  国内免费   820篇
  2024年   11篇
  2023年   54篇
  2022年   170篇
  2021年   234篇
  2020年   165篇
  2019年   229篇
  2018年   12110篇
  2017年   10862篇
  2016年   7859篇
  2015年   1279篇
  2014年   1061篇
  2013年   1154篇
  2012年   5274篇
  2011年   13757篇
  2010年   12555篇
  2009年   8734篇
  2008年   10512篇
  2007年   12042篇
  2006年   872篇
  2005年   1054篇
  2004年   1506篇
  2003年   1529篇
  2002年   1174篇
  2001年   484篇
  2000年   363篇
  1999年   190篇
  1998年   83篇
  1997年   81篇
  1996年   62篇
  1995年   38篇
  1994年   33篇
  1993年   55篇
  1992年   61篇
  1991年   71篇
  1990年   25篇
  1989年   31篇
  1988年   30篇
  1987年   23篇
  1985年   7篇
  1984年   14篇
  1983年   20篇
  1982年   6篇
  1976年   6篇
  1975年   7篇
  1972年   247篇
  1971年   278篇
  1965年   14篇
  1962年   24篇
  1944年   13篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Codon usage analysis has been a classical area of study for decades and is important for evolution, mRNA translation, and new gene discovery. Recently, genome sequencing has made it possible to perform studies of the entire genome in plant kingdoms. The base composition of the coding sequence, codon usage pattern, codon pairs, and related indicators of relative synonymous codon usage (RSCU), including the Fop, Nc, RSCU, CAI and GC contents, were analyzed. We found that the GC content of single-celled algae is the highest, whereas dicotyledons are the lowest. Moreover, the base composition of plants is similar within the same family. In addition, the GC content of the second base of the codon is lower than the first and third base. In conclusion, the codon usage characteristics are opposite in Gramineae, single-celled algae, fern and dicotyledon, moss, and Pinaceae. Furthermore, the degree of codon usage bias is decreasing with evolution. Therefore, we hypothesize that the lower the plants, the more that they must optimize codons and that higher plants no longer need to optimize codons.  相似文献   
993.
994.
995.
Serum phosphorus (P) concentration is associated with coronary artery calcification (CAC) as well as cardiovascular events in patients with chronic kidney disease. It has been suggested that this relationship is extended to subjects without renal dysfunction, but further explorations in diverse races and regions are still needed. We performed a cross-sectional study of 2,509 Korean subjects (Far Eastern Asian) with an estimated glomerular filtration rate of ≥60 ml/min/1.73m2 and who underwent coronary computerized tomography. Serum P concentration was divided into pre-determined 4 categories: ≤3.2, 3.2< to ≤3.6, 3.6< to ≤4.0 and >4.0 mg/dL. Agatston score (AS), an index of CAC, was divided into 3 categories: 0, 0< to ≤100, and >100. A multinomial logit model (baseline outcome: AS = 0) was applied to estimate the odds ratio (OR) for each serum P category (reference: ≤3.2mg/dL). Mean age of subjects was 53.5±9.1 years and 36.9% were female. In the adjusted model, serum P concentration of 3.6< to ≤4.0 mg/dL and >4.0 mg/dL showed high ORs for AS of >100 [OR: 1.58, 95% confidence interval (CI): 1.04–2.40 and OR: 2.11, 95% CI: 1.34–3.32, respectively]. A unit (mg/dL) increase in serum P concentration was associated with 50% increase in risk of AS >100 (OR: 1.50, 95% CI: 1.16–1.94). A higher serum P concentration, even within a normal range, may be associated with a higher CAC in subjects with normal renal function.  相似文献   
996.

Background

Knee osteoarthritis (OA) is the most common joint disease of adults worldwide. Since the treatments for advanced radiographic knee OA are limited, clinicians face a significant challenge of identifying patients who are at high risk of OA in a timely and appropriate way. Therefore, we developed a simple self-assessment scoring system and an improved artificial neural network (ANN) model for knee OA.

Methods

The Fifth Korea National Health and Nutrition Examination Surveys (KNHANES V-1) data were used to develop a scoring system and ANN for radiographic knee OA. A logistic regression analysis was used to determine the predictors of the scoring system. The ANN was constructed using 1777 participants and validated internally on 888 participants in the KNHANES V-1. The predictors of the scoring system were selected as the inputs of the ANN. External validation was performed using 4731 participants in the Osteoarthritis Initiative (OAI). Area under the curve (AUC) of the receiver operating characteristic was calculated to compare the prediction models.

Results

The scoring system and ANN were built using the independent predictors including sex, age, body mass index, educational status, hypertension, moderate physical activity, and knee pain. In the internal validation, both scoring system and ANN predicted radiographic knee OA (AUC 0.73 versus 0.81, p<0.001) and symptomatic knee OA (AUC 0.88 versus 0.94, p<0.001) with good discriminative ability. In the external validation, both scoring system and ANN showed lower discriminative ability in predicting radiographic knee OA (AUC 0.62 versus 0.67, p<0.001) and symptomatic knee OA (AUC 0.70 versus 0.76, p<0.001).

Conclusions

The self-assessment scoring system may be useful for identifying the adults at high risk for knee OA. The performance of the scoring system is improved significantly by the ANN. We provided an ANN calculator to simply predict the knee OA risk.  相似文献   
997.
Particle swarm optimization (PSO) is a population-based, stochastic optimization technique inspired by the social dynamics of birds. The PSO algorithm is rather sensitive to the control parameters, and thus, there has been a significant amount of research effort devoted to the dynamic adaptation of these parameters. The focus of the adaptive approaches has largely revolved around adapting the inertia weight as it exhibits the clearest relationship with the exploration/exploitation balance of the PSO algorithm. However, despite the significant amount of research efforts, many inertia weight control strategies have not been thoroughly examined analytically nor empirically. Thus, there are a plethora of choices when selecting an inertia weight control strategy, but no study has been comprehensive enough to definitively guide the selection. This paper addresses these issues by first providing an overview of 18 inertia weight control strategies. Secondly, conditions required for the strategies to exhibit convergent behaviour are derived. Finally, the inertia weight control strategies are empirically examined on a suite of 60 benchmark problems. Results of the empirical investigation show that none of the examined strategies, with the exception of a randomly selected inertia weight, even perform on par with a constant inertia weight.  相似文献   
998.
We propose Turing Learning, a novel system identification method for inferring the behavior of natural or artificial systems. Turing Learning simultaneously optimizes two populations of computer programs, one representing models of the behavior of the system under investigation, and the other representing classifiers. By observing the behavior of the system as well as the behaviors produced by the models, two sets of data samples are obtained. The classifiers are rewarded for discriminating between these two sets, that is, for correctly categorizing data samples as either genuine or counterfeit. Conversely, the models are rewarded for ‘tricking’ the classifiers into categorizing their data samples as genuine. Unlike other methods for system identification, Turing Learning does not require predefined metrics to quantify the difference between the system and its models. We present two case studies with swarms of simulated robots and prove that the underlying behaviors cannot be inferred by a metric-based system identification method. By contrast, Turing Learning infers the behaviors with high accuracy. It also produces a useful by-product—the classifiers—that can be used to detect abnormal behavior in the swarm. Moreover, we show that Turing Learning also successfully infers the behavior of physical robot swarms. The results show that collective behaviors can be directly inferred from motion trajectories of individuals in the swarm, which may have significant implications for the study of animal collectives. Furthermore, Turing Learning could prove useful whenever a behavior is not easily characterizable using metrics, making it suitable for a wide range of applications.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号