首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
  2022年   2篇
  2017年   2篇
  2015年   7篇
  2014年   1篇
  2013年   6篇
  2012年   11篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
61.
Lung infection by Burkholderia species, in particular Burkholderia cenocepacia, accelerates tissue damage and increases post-lung transplant mortality in cystic fibrosis patients. Host-microbe interplay largely depends on interactions between pathogen-specific molecules and innate immune receptors such as Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4·myeloid differentiation factor 2 (MD-2) LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4·MD-2 despite its lipid A having only five acyl chains. Furthermore, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the proinflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling combined with mutagenesis of TLR4-MD-2 interactive surfaces suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4·MD-2 complex by penta-acylated lipid A explaining the ability of hypoacylated B. cenocepacia LPS to promote proinflammatory responses associated with the severe pathogenicity of this opportunistic bacterium.  相似文献   
62.
Alkaline p-nitrophenylphosphate phosphatase (pNPPase) from the halophilic archaeon Halobacterium salinarum (previously halobium) was solubilized in reversed micelles of cetyltrimethylammonium bromide (CTAB) in cyclohexane with 1-butanol as cosurfactant. The hydrolysis reaction appears to follow Michaelis–Menten kinetics. The dependency of the maximum reaction rate (Vmax) on the water content θ (% v/v) (or ω0 value: molar ratio of water to surfactant concentrations) showed a bell-shaped curve for 0.3 M CTAB, but not for 0.2 M CTAB. The enzyme activity increased with the surfactant concentration at a constant ω0 value (10.27). When the surfactant concentration was increased at a constant θ, the enzyme activity decreased. The enzyme was more stable in reversed micelles than in aqueous media.  相似文献   
63.
As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.  相似文献   
64.
65.
We developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.  相似文献   
66.
New 4,5,6,7-tetrabromo benzotriazole derivatives have been synthesized, and their activities against CK2 have been tested. A click chemistry approach based on the copper-catalyzed azide-alkyne cycloaddition has been utilized to connect benzotriazoles, which efficiently interact with the ATP-binding site, to other subunits designed to simultaneously bind to the active and the substrate-binding sites of the enzyme. Docking studies allowed us to identify key interactions between CK2 and the designed ligands, which will be useful to optimize this series of multisite-directed inhibitors.  相似文献   
67.

Background

The elongase of long chain fatty acids family 6 (ELOVL6) is an enzyme that specifically catalyzes the elongation of saturated and monounsaturated fatty acids with 12, 14 and 16 carbons. ELOVL6 is expressed in lipogenic tissues and it is regulated by sterol regulatory element binding protein 1 (SREBP-1).

Objective

We investigated whether ELOVL6 genetic variation is associated with insulin sensitivity in a population from southern Spain.

Design

We undertook a prospective, population-based study collecting phenotypic, metabolic, nutritional and genetic information. Measurements were made of weight and height and the body mass index (BMI) was calculated. Insulin resistance was measured by homeostasis model assessment. The type of dietary fat was assessed from samples of cooking oil taken from the participants'' kitchens and analyzed by gas chromatography. Five SNPs of the ELOVL6 gene were analyzed by SNPlex.

Results

Carriers of the minor alleles of the SNPs rs9997926 and rs6824447 had a lower risk of having high HOMA_IR, whereas carriers of the minor allele rs17041272 had a higher risk of being insulin resistant. An interaction was detected between the rs6824447 polymorphism and the intake of oil in relation with insulin resistance, such that carriers of this minor allele who consumed sunflower oil had lower HOMA_IR than those who did not have this allele (P = 0.001).

Conclusions

Genetic variations in the ELOVL6 gene were associated with insulin sensitivity in this population-based study.  相似文献   
68.
Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal.  相似文献   
69.
Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.  相似文献   
70.
Summary Cultures ofDigitalis obscura L. were established from axillary buds of mature plants or leaves of seedlings obtained under aseptic conditions. Explants were cultured on Murashige and Skoog medium containing benzyladenine and/or naphthaleneacetic acid. Shoot proliferation from axillary buds was not affected by seasonal fluctuations in the stock plants and increased relative to the cytokinin concentration, but auxin reduced the multiplication rate. Differentiation of somatic embryos and adventitious buds from cultured leaves required naphthaleneacetic acid alone or combined with benzyladenine, respectively. Cardenolide pattern and content of the regenerated plants were determined by high performance liquid chromatography and radioimmunoassay, respectively. Several cardenolides of series A and C were identified in the regenerants; no significant differences were found in the cardenolide patterns. Digoxigenin derivatives were found in all clonally propagated plants, but the amount of these glycosides was much higher in those obtained from axillary buds. This is the first report on micropropagation ofD. obscura from mature plants. The financial support of CICYT, Madrid, Spain (project no. PB89-0419) is gratefully acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号