首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   3篇
  114篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   13篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   7篇
  2001年   8篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
71.
Biological activity in the composting reactor of the bio-toilet system   总被引:4,自引:0,他引:4  
The bio-toilet is becoming commercially available and it is actually used in Japan in public parks, sightseeing areas, and households; however, the biological activity in the system during degradation of toilet wastes, particularly faeces, is unknown. Thus, in this study activity of microorganisms in the bio-toilet system during degradation of faeces was assessed through the quantification of reductions in total solids (TS), volatile solids (VS), and chemical oxygen demand (COD) during batch tests in laboratory-scale composting reactors. Additionally, the fate of nitrogen and its transformation processes in such reactors were evaluated. TS, VS, and COD reductions were on the order of 56%, 70%, and 75%, respectively, irrespective of the organic loading regarded. Total nitrogen (T-N) reductions quantified 94%, regardless of the organic loading. Furthermore, all T-N reductions observed during composting were equivalent to the NH(3)-N released from the reactor, i.e., 94% of ammonia was lost.  相似文献   
72.
Nickel uptake system was investigated with a wild-type cell of Rhodopseudomonas capsulata and two mutants lacking uptake hydrogenase (Hup-). Wild type cells grown photoheterotrophically incorporated 63Ni2+ by a high affinity system. The uptake system had a pH of 7.0 and a temperature optimum of 28°C. Both Mg2+ and Co2+ ions severely repressed the uptake of Ni2+. Nickel transport was also inhibited by metabolic inhibitors including cyanide, azide, 2,4-dinitrophenol and m-chlorophenyl carbonylcyanidehydrazone. These data imply that Ni2+ uptake system occurs by the energy-linked system for Mg2+ transport. The intracellular distribution of 63Ni2+ in Hup- cells showed the same pattern as that of wild-type cells, indicate that the Hup- strains have no deficiency in Ni2+ transport.Abbreviations CCCP m-chlorophenyl carbonylcyanidehydrazone - HEPES N-2-hydroxylethylpiperazine-N-2-ethane-sulfuric acid - HOQNO 2-n-nonly-4-hydroxyquinoline-N-oxide - TMA tetramethylammonium hydroxide  相似文献   
73.
Obesity-related diseases are associated with vascular dysfunction and impaired revascularization. Omentin is a fat-derived secreted protein, which is down-regulated in association with obese complications. Here, we investigated whether omentin modulates endothelial cell function and revascularization processes in vitro and in vivo. Systemic delivery of an adenoviral vector expressing omentin (Ad-omentin) enhanced blood flow recovery and capillary density in ischemic limbs of wild-type mice in vivo, which were accompanied by increased phosphorylation of Akt and endothelial nitric oxide synthase (eNOS). In cultured human umbilical vein endothelial cells (HUVECs), a physiological concentration of recombinant omentin protein increased differentiation into vascular-like structures and decreased apoptotic activity under conditions of serum starvation. Treatment with omentin protein stimulated the phosphorylation of Akt and eNOS in HUVECs. Inhibition of Akt signaling by treatment with dominant-negative Akt or LY294002 blocked the stimulatory effects of omentin on differentiation and survival of HUVECs and reversed omentin-stimulated eNOS phosphorylation. Pretreatment with the NOS inhibitor also reduced the omentin-induced increase in HUVEC differentiation and survival. Omentin protein also stimulated the phosphorylation of AMP-activated protein kinase in HUVECs. Transduction with dominant-negative AMP-activated protein kinase diminished omentin-induced phosphorylation of Akt and omentin-stimulated increase in HUVEC differentiation and survival. Of importance, in contrast to wild-type mice, systemic administration of Ad-omentin did not affect blood flow in ischemic muscle in eNOS-deficient mice in vivo. These data indicate that omentin promotes endothelial cell function and revascularization in response to ischemia through its ability to stimulate an Akt-eNOS signaling pathway.  相似文献   
74.
Erythrocyte protein 4.1R is a multifunctional protein that binds to various membrane proteins and to phosphatidylserine. In the present study, we report two important observations concerning 4.1R-phosphatidylserine interaction. Biochemically, a major finding of the present study is that 4.1R binding to phosphatidylserine appears to be a two-step process in which 4.1R first interacts with serine head group of phosphatidylserine through the positively charged amino acids YKRS and subsequently forms a tight hydrophobic interaction with fatty acid moieties. 4.1R failed to dissociate from phosphatidylserine liposomes under high ionic strength but could be released specifically by phospholipase A(2) but not by phospholipase C or D. Biochemical analyses showed that acyl chains were associated with 4.1R released by phospholipase A(2). Importantly, the association of acyl chains with 4.1R impaired its ability to interact with calmodulin, band 3, and glycophorin C. Removal of acyl chains restored 4.1R binding. These data indicate that acyl chains of phosphatidylserine play an important role in its interaction with 4.1R and on 4.1R function. In terms of biological significance, we have obtained evidence that 4.1R-phosphatidylserine interaction may play an important role in cellular sorting of 4.1R.  相似文献   
75.
Accumulating evidence shows that obesity is associated with doxorubicin cardiac toxicity in the heart, but the molecular mechanisms that contribute to this pathological response are not understood. Adiponectin is an adipose-derived, cardioprotective factor that is down-regulated in obesity. Here, we investigated the effect of adiponectin on doxorubicin (DOX)-induced cardiotoxicity and assessed the mechanisms of this effect. A single dose of DOX was intraperitoneally injected into the abdomen of adiponectin knock-out (APN-KO) and wild-type (WT) mice. APN-KO mice had increased mortality and exacerbated contractile dysfunction of left ventricle compared with WT mice. APN-KO mice also showed increased apoptotic activity and diminished Akt signaling in the failing myocardium. Systemic delivery of adenoviral vector expressing adiponectin improved left ventricle dysfunction and myocardial apoptosis following DOX injection in WT and APN-KO mice but not in Akt1 heterozygous KO mice. In cultured rat neonatal cardiomyocytes, adiponectin stimulated Akt phosphorylation and inhibited DOX-stimulated apoptosis. Treatment with sphingosine kinase-1 inhibitor or sphingosine 1-phosphate receptor antagonist diminished adiponectin-induced Akt phosphorylation and reversed the inhibitory effects of adiponectin on myocyte apoptosis. Pretreatment with anti-calreticulin antibody reduced the binding of adiponectin to cardiac myocytes and blocked the adiponectin-stimulated increase in Akt activation and survival in cardiomyocytes. Interference of the LRP1/calreticulin co-receptor system by siRNA or blocking antibodies diminished the stimulatory actions of adiponectin on Akt activation and myocyte survival. These data show that adiponectin protects against DOX-induced cardiotoxicity by its ability to promote Akt signaling.  相似文献   
76.
We have developed a new class of PDE10A inhibitor, a pyrazolo[1,5-a]pyrimidine derivative MT-3014 (1). A previous compound introduced was deprioritized due to concerns for E/Z-isomerization and glutathione-adduct formation at the core stilbene structure. We discovered pyrazolo [1,5-a] pyrimidine as a new lead scaffold by structure-based drug design utilizing a co-crystal structure with PDE10A. The lead compound was optimized for in vitro activity, solubility, and selectivity against human ether-á-go-go related gene cardiac channel binding. We observed that MT-3014 shows excellent efficacy in rat conditioned avoidance response test and suitable pharmacokinetic properties in rats, especially high brain penetration.  相似文献   
77.
Protein 4.1R (4.1R) has been identified as the major component of the human erythrocyte membrane skeleton. The members of the protein 4.1 gene family are expressed in a tissue-specific alternative splicing manner that increases their functions in each tissue; however, the exact roles of cardiac 4.1R in the developing myocardium are poorly understood. In zebrafish (ZF), we identified two heart-specific 4.1R isoforms, ZF4.1RH2 and ZF4.1RH3, encoding N-terminal 30 kDa (FERM) domain and spectrin-actin binding domain (SABD) and C-terminal domain (CTD), separately. Applying immunohistochemistry using specific antibodies for 30 kDa domain and CTD separately, the gene product of ZF4.1RH2 and ZF4.1RH3 appeared only in the ventricle and in the atrium, respectively, in mature hearts. During embryogenesis, both gene expressions are expressed starting 24 h post-fertilization (hpf). Following whole-mount in situ hybridization, ZF4.1RH3 gene expression was detected in the atrium of 37 hpf embryos. These results indicate that the gene product of ZF4.1RH3 is essential for normal morphological shape of the developing heart and to support the repetitive cycles of its muscle contraction and relaxation.  相似文献   
78.
Erythrocyte membrane mechanical function is regulated by the spectrin-based membrane skeleton composed of alpha- and beta-spectrin, actin, protein 4.1R (4.1R), and adducin. Post-translational modifications of these proteins have been suggested to modulate membrane mechanical function. Indeed, beta-spectrin phosphorylation by casein kinase I has been shown to decrease membrane mechanical stability. However, the effects of the phosphorylation of skeletal proteins by protein kinase C (PKC), a serine/threonine kinase, have not been elucidated. In the present study, we explored the functional consequences of the phosphorylation of 4.1R and adducin by PKC. We identified Ser-312 in 4.1R as the PKC phosphorylation site. Using antibodies raised against phosphopeptides of 4.1R and adducin, we documented significant differences in the time course of phosphorylation of adducin and 4.1R by PKC. Although adducin was phosphorylated rapidly by the activation of membrane-bound atypical PKC by phorbol 12-myristate 13-acetate stimulation, there was a significant delay in the phosphorylation of 4.1R because of delayed recruitment of conventional PKC from cytosol to the membrane. This differential time course in the phosphorylation of 4.1R and adducin in conjunction with membrane mechanical stability measurements enabled us to document that, although phosphorylation of adducin by PKC has little effect on membrane mechanical stability, additional phosphorylation of 4.1R results in a marked decrease in membrane mechanical stability. We further showed that the phosphorylation of 4.1R by PKC results in its decreased ability to form a ternary complex with spectrin and actin as well as dissociation of glycophorin C from the membrane skeleton. These findings have enabled us to define a regulatory role for 4.1R phosphorylation in dynamic regulation of red cell membrane properties.  相似文献   
79.
The adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions. Amelioration of diabetes and insulin resistance was associated with increased expression of molecules involved in fatty acid oxidation such as acyl-CoA oxidase, and molecules involved in energy dissipation such as uncoupling proteins 2 and 3 and increased fatty acid oxidation in skeletal muscle of gAd Tg ob/ob mice. Moreover, despite similar plasma glucose and lipid levels on an apoE-deficient background, gAd Tg apoE-deficient mice showed amelioration of atherosclerosis, which was associated with decreased expression of class A scavenger receptor and tumor necrosis factor alpha. This is the first demonstration that globular adiponectin can protect against atherosclerosis in vivo. In conclusion, replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis.  相似文献   
80.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号