首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   252篇
  2646篇
  2023年   13篇
  2022年   14篇
  2021年   41篇
  2020年   25篇
  2019年   31篇
  2018年   41篇
  2017年   42篇
  2016年   73篇
  2015年   133篇
  2014年   115篇
  2013年   170篇
  2012年   207篇
  2011年   191篇
  2010年   111篇
  2009年   120篇
  2008年   152篇
  2007年   150篇
  2006年   124篇
  2005年   117篇
  2004年   107篇
  2003年   80篇
  2002年   72篇
  2001年   32篇
  2000年   25篇
  1999年   37篇
  1998年   21篇
  1997年   20篇
  1996年   15篇
  1995年   19篇
  1994年   13篇
  1993年   14篇
  1992年   19篇
  1991年   25篇
  1990年   11篇
  1989年   20篇
  1988年   12篇
  1987年   20篇
  1986年   10篇
  1985年   14篇
  1984年   12篇
  1983年   13篇
  1982年   11篇
  1981年   9篇
  1980年   13篇
  1978年   20篇
  1976年   7篇
  1975年   10篇
  1974年   12篇
  1973年   18篇
  1971年   10篇
排序方式: 共有2646条查询结果,搜索用时 15 毫秒
51.
McNamara ME  Briggs DE  Orr PJ  Wedmann S  Noh H  Cao H 《PLoS biology》2011,9(11):e1001200
Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.  相似文献   
52.
We monitored, for the first time, the activity of two model heterologous promoters, the Agrobacterium rhizogenes rolC and the cauliflower mosaic virus (CaMV) 35S, throughout the annual cycle of growth and dormancy in a perennial species, hybrid aspen. Each promoter was fused to the uidA -glucuronidase (GUS) reporter gene and the constructs were introduced into the hybrid aspen genome by Agrobacterium-mediated transformation. Both wildtype and transgenic plants were cultivated under different regimes of photoperiod and temperature to induce passage through one growth-dormancy-reactivation cycle, and at intervals GUS staining was assessed in stem sections. In rolC::uidA transformants, GUS activity in rapidly growing current-year shoots was not only tissue-specific, being localized to the phloem, but also cell-specific at the shoot base, where it was present only in the companion cells. However, during the onset of dormancy induced by short photoperiod, GUS activity shifted laterally from the phloem to include the cortex and pith. After subsequent exposure to chilling temperatures to induce the transition between the dormancy stages of rest and quiescence, GUS activity almost disappeared from all stem tissues, but regained its original phloem specificity and intensity after the shoots were reactivated by exposing them to long photoperiod and high temperatures. In contrast, GUS activity in the stem of 35S::uidA transformants was strong in all tissues except for the vascular cambium and xylem, and did not vary in intensity during the growth-dormancy-reactivation cycle. The lateral shift and increased intensity of GUS activity in the stem of rolC::uidA transformants during dormancy induction was shown to be associated with the accumulation of starch, and to be mimicked by incubating stem sections in sucrose, as well as glucose and fructose, but not sorbitol, prior to the GUS assay. Our results demonstrate that the activities of the rolC and 35S promoters varied in very different, unpredictable ways during the annual cycle of growth and dormancy in a perennial species, and indicate that the spatial and temporal variation in rolC promoter activity that we observed in the stem of transgenic hybrid aspen plants is attributable to cellular and seasonal changes in sucrose content.  相似文献   
53.
54.
The central focus of this study is on the antibacterial and antifungal properties of synthetically produced S,S'-bis(heterosubstituted) disulfides as a means to control the growth of various infection-causing pathogens. Staphylococcus aureus, Francisella tularensis and Candida albicans were each found to be highly susceptible to several of these compounds by agar or broth dilution and Kirby-Bauer diffusion assays. These structurally simple, low molecular weight disulfides have shown promising bioactivities and may serve as leads to the development of effective new antibacterials for pathogenic bacteria such as methicillin-resistant S. aureus and F. tularensis.  相似文献   
55.
The pseudanthia ofHeliopsis scabra andRudbeckia vulgaris (Asteraceae) were examined during the anthesis for differences in their UV patterns. Distinct changes in the reflectance and absorbance properties could be observed. The results suggest a close correlation between different stages of floral development and pollinator attraction.
Herrn Prof. Dr.Lothar Geitler zum 90. Geburtstag gewidmet.  相似文献   
56.
57.
The transition between the quiescent mature and the metabolically active germinating pollen grain most probably involves changes in protein phosphorylation status, since phosphorylation has been implicated in the regulation of many cellular processes. Given that, only a minor proportion of cellular proteins are phosphorylated at any one time, and that phosphorylated and nonphosphorylated forms of many proteins can co‐exist within a cell, the identification of phosphoproteins requires some prior enrichment from a crude protein extract. Here, we have used metal oxide/hydroxide affinity chromatography (MOAC) based on an aluminum hydroxide matrix for this purpose, and have generated a population of phosphoprotein candidates from both mature and in vitro activated tobacco pollen grains. Both electrophoretic and nonelectrophoretic methods, allied to MS, were applied to these extracts to identify a set of 139 phosphoprotein candidates. In vitro phosphorylation was also used to validate the spectrum of phosphoprotein candidates obtained by the MOAC phosphoprotein enrichment. Since only one phosphorylation site was detected by the above approach, titanium dioxide phosphopeptide enrichment of trypsinized mature pollen crude extract was performed as well. It resulted in a detection of additional 51 phosphorylation sites giving a total of 52 identified phosphosites in this set of 139 phosphoprotein candidates.  相似文献   
58.
Viridans streptococci that participate in the microbial colonizationof teeth have cell wall polysaccharides composed of linear phosphodiester-linkedhexa- or heptasaccharide repeating units, each containing ahost-like disaccharide motif, either Galß1  相似文献   
59.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   
60.
Regulatory T cells (Tregs) are important for the attenuation of immune reactions. During viral CNS infections, however, an indiscriminate maintenance of CNS immune privilege through Treg-mediated negative regulation could prevent autoimmune sequelae but impair the control of viral replication. We analyzed in this study the impact of Tregs on the development of acute viral encephalomyelitis, T cell-mediated antiviral protection, and prevention of CNS autoimmunity following intranasal infection with the gliatropic mouse hepatitis virus strain A59. To assess the contribution of Tregs in vivo, we specifically depleted CD4(+)Foxp3(+) T cells in a diphtheria toxin-dependent manner. We found that depletion of Tregs had no impact on viral distribution and clearance and did not significantly alter virus-specific CD4(+) and CD8(+) T cell responses. However, Treg depletion led to a more severe CNS inflammation associated with neuronal damage. Dissection of the underlying immunopathological mechanisms revealed the elaborate Treg-dependent regulation of self-reactive CD4(+) T cell proliferation within the CNS-draining lymph node and downtuning of CXCR3 expression on T cells. Taken together, these results suggest that Tregs preserve CNS immune privilege through selective control of CNS-specific Th cells while keeping protective antiviral immunity fully operative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号