首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23653篇
  免费   1798篇
  国内免费   8篇
  2023年   181篇
  2022年   401篇
  2021年   675篇
  2020年   497篇
  2019年   618篇
  2018年   786篇
  2017年   701篇
  2016年   966篇
  2015年   1257篇
  2014年   1410篇
  2013年   1692篇
  2012年   1881篇
  2011年   1754篇
  2010年   1059篇
  2009年   958篇
  2008年   1181篇
  2007年   1208篇
  2006年   1069篇
  2005年   985篇
  2004年   895篇
  2003年   814篇
  2002年   701篇
  2001年   401篇
  2000年   353篇
  1999年   315篇
  1998年   179篇
  1997年   164篇
  1996年   141篇
  1995年   110篇
  1994年   124篇
  1993年   107篇
  1992年   178篇
  1991年   135篇
  1990年   105篇
  1989年   125篇
  1988年   116篇
  1987年   113篇
  1986年   104篇
  1985年   84篇
  1984年   96篇
  1983年   55篇
  1982年   58篇
  1981年   58篇
  1980年   44篇
  1979年   67篇
  1978年   49篇
  1977年   45篇
  1975年   47篇
  1973年   54篇
  1972年   38篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
971.
The present paper addresses the numerical optimization of geometrical parameters of non-Newtonian micro-scale viscous pumps for biomedical devices. The objective is to maximize the mass flow rate per unit of shaft power consumed by the rotor when an external pressure load is applied along the channel that houses the rotor. Two geometric parameters are considered in the optimization process: (i) the height of the channel that houses the rotor (H) and (ii), the eccentricity (epsilon) of the rotor. Three different micro-scale viscous pump configurations were tested: a straight-housed pump (I-shaped housing) and two curved housed pumps (L- and U-shaped housings). The stress-strain constitutive law is modeled by a power-law relation. The results show that the geometric optimization of micro-scale viscous pumps is critical since the mass flow rate propelled by the rotor is highly dependent on epsilon and H. Numerical simulations indicate that mass flow rate is maximized when epsilon approximately 0, namely when the rotor is placed at a distance of 0.05 radii from the lower wall. The results also show that micro-scale viscous pumps with curved housing provide higher mass flow rate per unit of shaft power consumed when compared with straight-housed pumps. The results are presented in terms optimized dimensions of all three configurations (i.e., H(opt) and epsilon(opt)) and for values of the power-law index varying between 0.5 (shear thinning fluids) and 1.5 (shear-thickening fluids).  相似文献   
972.
Leaf-litter decomposition is a major component of carbon and nutrient dynamics in tropical forest ecosystems, and moisture availability is widely considered to be a major influence on decomposition rates. Here, we report the results of a study of leaf-litter decomposition of five tree species in response to dry-season irrigation in a tropical forest regrowth stand in the Brazilian Amazon; three experiments differing in the timing of installation and duration allowed for an improved resolution of irrigation effects on decomposition. We hypothesized that decomposition rates would be faster under higher moisture availability in the wet season and during dry-season irrigation periods in the treatment plots, and that decomposition rates would be faster for species with higher quality leaves, independent of treatment. The rates of decomposition ( k ) were up to 2.4 times higher in irrigated plots than in control plots. The highest k values were shown by Annona paludosa (0.97 to 1.26/yr) while Ocotea guianensis (0.73 to 0.85/yr) had the lowest values; intermediate rates were found for Lacistema pubescens (0.91 to 1.02/yr) and Vismia guianensis (0.91 to 1.08/yr). These four tree species differed significantly in leaf-litter quality parameters (nitrogen, phosphorus, lignin, and cellulose concentrations, as well as lignin:nitrogen and carbon:nitrogen ratios), but differences in decomposition rates among tree species were not strictly correlated with leaf-litter quality. Overall, our results show that dry-season moisture deficits limit decomposition in Amazonian forest regrowth.  相似文献   
973.
Alginate fractions from Sargassum vulgare brown seaweed were characterized by (1)H NMR and fluorescence spectroscopy and by rheological measurements. The alginate extraction conditions were investigated. In order to carry out the structural and physicochemical characterization, samples extracted for 1 and 5h at 60 degrees C were further purified by re-precipitation with ethanol and denoted as SVLV (S. vulgare low viscosity) and SVHV (S. vulgare high viscosity), respectively. The M/G ratio values for SVLV and SVHV were 1.56 and 1.27, respectively, higher than the ratio for most Sargassum spp. alginates (0.19-0.82). The homopolymeric blocks F(GG) and F(MM) of these fractions characterized by (1)H NMR spectroscopy were 0.43 and 0.55 for SVHV and 0.36 and 0.58 for SVLV samples, respectively, these values typically being within 0.28-0.77 and 0.07-0.41, respectively. Therefore, the alginate samples from S. vulgare are much richer in mannuronic block structures than those from other Sargassum species. Values of M(w) for alginate samples were also calculated using intrinsic viscosity data. The M(w) value for SVLV (1.94 x 10(5)g/mol) was lower than that for SVHV (3.3 x 10(5)g/mol). Newtonian behavior was observed for a solution concentration as high as 0.7% for SVLV, while for SVHV the solutions behaved as a Newtonian fluid up to 0.5%. The optimal conditions for obtaining the alginates from S. vulgare were 60 degrees C and 5h extraction. Under these conditions, a more viscous alginate in higher yield was extracted from the seaweed biomass.  相似文献   
974.
975.
In addition to its classic glycolytic role, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated in many activities unrelated to glycolysis, such as membrane fusion, binding to host proteins and signal transduction. GAPDH can be the target of several modifications that allow incorporation to membranes and possible regulation of its activity; among these modifications is mono-ADP-ribosylation. This post-translational modification is important for the regulation of many cellular processes and is the mechanism of action of several bacterial toxins. In a previous study, we observed the extracellular ADP-ribosylation of a 37-kDa ameba protein. We report here that GAPDH and cysteine synthase A are the main ADP-ribosylated proteins in Entamoeba histolytica extracellular medium, GAPDH is secreted from ameba at 37 degrees C in a time-dependent manner, and its enzymatic activity is not inhibited by ADP-ribosylation. Extracellular GAPDH from ameba may play an important role in the survival of this human pathogen or in interaction with host molecules, as occurs in other organisms.  相似文献   
976.
The sporogonic development of the malaria parasite takes place in the mosquito and a wide range of factors modulates it. Among those, the contents of the blood meal can influence the parasite development directly or indirectly through the mosquito response to the infection. We have studied the effect of a second blood meal in previously infected mosquitoes and the effect of anti-sporozoite immune serum on parasite development and mosquito response to the infection. The prevalence and intensity of infection and gene expression of both Plasmodium yoelii and Anopheles stephensi was analyzed. We verified that a second blood meal and its immune status interfere with parasite development and with Plasmodium and mosquito gene expression.  相似文献   
977.
Dewor M  Steffens G  Krohn R  Weber C  Baron J  Bernhagen J 《FEBS letters》2007,581(24):4734-4742
MIF was recently redefined as an inflammatory cytokine, which functions as a critical mediator of diseases such as septic shock, rheumatoid arthritis, atherosclerosis, and cancer. MIF also regulates wound healing processes. Given that fibroblast migration is a central event in wound healing and that MIF was recently demonstrated to promote leukocyte migration through an interaction with G-protein-coupled receptors, we investigated the effect of MIF on fibroblast migration in wounded monolayers in vitro. Transient but not permanent exposure of primary mouse or human fibroblasts with MIF significantly promoted wound closure, a response that encompassed both a proliferative and a pro-migratory component. Importantly, MIF-induced fibroblast activation was accompanied by an induction of calcium signalling, whereas chronic exposure with MIF down-regulated the calcium transient, suggesting receptor desensitization as the underlying mechanism.  相似文献   
978.
Two-photon scanning laser and confocal microscopies were used to image metabolic dynamics of single or cell populations of Saccharomyces cerevisiae strain 28033. Autofluorescence of reduced nicotinamide nucleotides, and mitochondrial membrane potential (DeltaPsim), were simultaneously monitored. Spontaneous, large-scale synchronized oscillations of NAD(P)H and DeltaPsim throughout the entire population of yeasts occurred under perfusion with aerated buffer in a continuous single-layered film of organisms. These oscillations stopped in the absence of perfusion and the intracellular NAD(P)H pool became reduced. Individual mitochondria within a single yeast also showed in-phase synchronous responses with the cell population, in both tetramethylrhodamine ethyl ester (or tetramethylrhodamine methyl ester) and autofluorescence. A single, localized, laser flash also triggered mitochondrial oscillations in single cells suggesting that the mitochondrion may behave as an autonomous oscillator. We conclude that spontaneous oscillations of S. cerevisiae mitochondrial redox states and DeltaPsim occur within individual yeasts, and synchrony of populations of organisms indicates the operation of an efficient system of cell-cell interaction to produce concerted metabolic multicellular behaviour on the minute time scale in both cases.  相似文献   
979.
The RegB endoribonuclease participates in the bacteriophage T4 life cycle by favoring early messenger RNA breakdown. RegB specifically cleaves GGAG sequences found in intergenic regions, mainly in translation initiation sites. Its activity is very low but can be enhanced up to 100-fold by the ribosomal 30 S subunit or by ribosomal protein S1. RegB has no significant sequence homology to any known protein. Here we used NMR to solve the structure of RegB and map its interactions with two RNA substrates. We also generated a collection of mutants affected in RegB function. Our results show that, despite the absence of any sequence homology, RegB has structural similarities with two Escherichia coli ribonucleases involved in mRNA inactivation on translating ribosomes: YoeB and RelE. Although these ribonucleases have different catalytic sites, we propose that RegB is a new member of the RelE/YoeB structural and functional family of ribonucleases specialized in mRNA inactivation within the ribosome.  相似文献   
980.
Peptide O-xylosyltransferase (EC 2.4.2.26) is the first enzyme required for the generation of chondroitin and heparan sulfate glycosaminoglycan chains of proteoglycans. Cloning of cDNAs has previously shown that, whereas invertebrates generally have a single xylosyltransferase gene, vertebrate genomes encode two similar proteins, xylosyltransferase I and II (XT-I and XT-II). To date, enzymatic activity has only been demonstrated for the human XT-I, Caenorhabditis SQV-6, and Drosophila OXT isoforms. In the present study, we demonstrate that a soluble form of human XT-II expressed in the xylosyltransferase-deficient pgsA-745 (S745) Chinese hamster ovary cell line is indeed capable of catalyzing the transfer of xylose to a variety of peptide substrates; its enzyme activity was also proven using a Pichia-expressed form of XT-II. Its pH, temperature, and cation dependences are similar to those of XT-I expressed in either mammalian cells or yeast. Our data suggest that XT-I and XT-II are, at least in vitro, functionally identical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号