首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3685篇
  免费   260篇
  国内免费   1篇
  3946篇
  2023年   24篇
  2022年   51篇
  2021年   76篇
  2020年   53篇
  2019年   58篇
  2018年   101篇
  2017年   78篇
  2016年   126篇
  2015年   179篇
  2014年   209篇
  2013年   295篇
  2012年   317篇
  2011年   304篇
  2010年   207篇
  2009年   177篇
  2008年   225篇
  2007年   230篇
  2006年   223篇
  2005年   201篇
  2004年   190篇
  2003年   178篇
  2002年   152篇
  2001年   27篇
  2000年   19篇
  1999年   19篇
  1998年   32篇
  1997年   24篇
  1996年   13篇
  1995年   7篇
  1994年   11篇
  1993年   10篇
  1992年   10篇
  1991年   13篇
  1990年   6篇
  1988年   4篇
  1986年   5篇
  1985年   4篇
  1984年   12篇
  1982年   6篇
  1981年   7篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   8篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
排序方式: 共有3946条查询结果,搜索用时 15 毫秒
91.
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.  相似文献   
92.
Mitochondria can behave as individual oscillators whose dynamics may obey collective, network properties. We have shown that cardiomyocytes exhibit high-amplitude, self-sustained, and synchronous oscillations of bioenergetic parameters when the mitochondrial network is stressed to a critical state. Computational studies suggested that additional low-amplitude, high-frequency oscillations were also possible. Herein, employing power spectral analysis, we show that the temporal behavior of mitochondrial membrane potential (DeltaPsi(m)) in cardiomyocytes under physiological conditions is oscillatory and characterized by a broad frequency distribution that obeys a homogeneous power law (1/f(beta)) with a spectral exponent, beta = 1.74. Additionally, relative dispersional analysis shows that mitochondrial oscillatory dynamics exhibits long-term memory, characterized by an inverse power law that scales with a fractal dimension (D(f)) of 1.008, distinct from random behavior (D(f) = 1.5), over at least three orders of magnitude. Analysis of a computational model of the mitochondrial oscillator suggests that the mechanistic origin of the power law behavior is based on the inverse dependence of amplitude versus frequency of oscillation related to the balance between reactive oxygen species production and scavenging. The results demonstrate that cardiac mitochondria behave as a network of coupled oscillators under both physiological and pathophysiological conditions.  相似文献   
93.
The nitrosylation of two water-soluble iron-porphyrins, the anionic Fe(III)-meso-tetrakis(p-sulfonatophenyl)porphyrin (FeTPPS(4)) and the cationic Fe(III)-meso-tetrakis(4-N-methylpyridiniumyl)porphyrin (FeTMPyP), by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) was studied using optical absorption spectroscopy. The influence of ionic and non-ionic micelles on rates of nitric oxide transfer was investigated. Initially, the effect of the micelles on the pH-dependent equilibrium between monomeric and micro-oxo-dimeric species of the iron-porphyrins was examined. It is not affected in micelle-porphyrin systems with electric charges identical in sign. The non-ionic micelles of polidocanol induce a small negative pK shift. In contrast, the dimerization equilibrium of porphyrins in oppositely charged micellar phases is displaced to lower pH by approximately 2 units. Nitric oxide binding to monomers and micro-oxo-dimers was examined at pH 5.0 and 8.0, respectively. Contrary to nitrosylation by NO gas, SNAP induces reductive nitrosylation. There was no observed NO-Fe(III)porphyrin intermediate. Nitrosylation rates were obtained and compared in aqueous buffer and in micellar systems. Monomers nitrosylate much faster than micro-oxo-dimers. Oppositely charged micelles prevent nitrosylation of the iron-porphyrins or considerably enhance nitrosylation times. Nitrosylation rates are comparable to transnitrosylation rates between several S-nitrosothiols and thiol-containing proteins, suggesting biological relevance for the process.  相似文献   
94.
Intense inflammatory lesions and early development of interstitial fibrosis of the myocardium and skeletal muscle with spontaneous regression, have been described in Calomys callosus infected with Trypanosoma cruzi. The genetic types of collagen present in this model were investigated through immunohistochemistry using specific antibodies, combined with histopathology and Picro-Sirius staining of collagen. Thirty-five calomys were infected with the Colombian strain of T. cruzi and sacrificed at 24, 30, 40, 60 and 90 days post-infection. Inflammatory lesions and fibrogenesis were prominent at the early phase of infection and significantly decreased during late infection. Immunoisotyping of the matrix components was performed by indirect immunofluorescence on 5 micro m thick cryostat sections using specific antibodies against laminin, fibronectin and isotypes I, III and IV of collagen. In the early phase, positive deposits of all the matrix components were present, with predominance of fibronectin, laminin and collagens types I and III in the myocardium and of types III and IV in the skeletal muscles. From the 40th day, type IV collagen predominates in the heart. At the late phase of infection (60th to 90th day), a clear fragmentation and decrease of all the matrix components were detected. Findings of the present study indicate that a modulation of the inflammatory process occurs in the model of C. callosus, leading to spontaneous regression of fibrosis independent of the genetic types of collagen involved in this process.  相似文献   
95.
Morphologically normal and fertile transgenic plants of mungbean with two transgenes, bar and α-amylase inhibitor, have been developed for the first time. Cotyledonary node explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pKSB that carried bialaphos resistance (bar) gene and Phaseolus vulgaris α-amylase inhibitor-1 (αAI-1) gene. Green transformed shoots were regenerated and rooted on medium containing phosphinothricin (PPT). Preculture and wounding of the explants, presence of acetosyringone and PPT-based selection of transformants played significant role in enhancing transformation frequency. Presence and expression of the bar gene in primary transformants was evidenced by PCR-Southern analysis and PPT leaf paint assay, respectively. Integration of the Phaseolus vulgaris α-amylase inhibitor gene was confirmed by Southern blot analysis. PCR analysis revealed inheritance of both the transgenes in most of the T1 lines. Tolerance to herbicide was evidenced from seed germination test and chlorophenol red assay in T1 plants. Transgenic plants could be recovered after 8–10 weeks of cocultivation with Agrobacterium. An overall transformation frequency of 1.51% was achieved.  相似文献   
96.
Activation of endothelial cell NF-kappaB by interleukin (IL)-1 constitutes an event critical to the progression of the innate immune response. In this context, oxidants have been associated with NF-kappaB activation, although the molecular source and mechanism of targeting have remained obscure. We found that RelA, essential for NF-kappaB activation by IL-1, was associated with the NADPH oxidase adapter protein p47(phox) in yeast two-hybrid, coprecipitation, and in vitro binding studies. RelA and p47-GFP also colocalized in endothelial cells in focal submembranous dorsoventral protrusions. Overexpression of p47(phox) synergized with IL-1beta in the activation of an artificial kappaB-luciferase reporter and specifically augmented IL-1beta-induced RelA transactivation activity. p47(phox) overexpression also greatly increased IL-1beta-stimulated RelA phosphorylation, whereas it had no effect on I-kappaB degradation or on RelA nuclear translocation or kappaB binding. The tandem SH3 domains of p47(phox) were found to associate with a proline-rich mid-region of RelA (RelA-PR) located between the Rel homology and transactivation domains. The RelA-PR peptide blocked interaction of p47(phox) and RelA, and ectopic expression of RelA-PR abrogated IL-1beta-induced transactivation of the NF-kappaB-dependent E-selectin promoter. Further, suppression of NADPH oxidase function through the inhibitor diphenylene iodonium, the superoxide dismutase mimetic Mn(III) tetrakis(4-benzoic acid)porphyrin (MnTBAP), or expression of a dominant interfering mutant of a separate NADPH oxidase subunit (p67(V204A)) decreased IL-1beta-induced E-selectin promoter activation, suggesting that p47(phox) facilitates NF-kappaB activation through linkage with the NADPH oxidase. IL-1beta rapidly increased tyrosine phosphorylation of IL-1 type I receptor-associated proteins, suggesting that oxidants may operate through inactivation of local protein-tyrosine phosphatases in the proximal IL-1beta signaling pathway leading to RelA activation.  相似文献   
97.
98.
99.
100.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号