首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5423篇
  免费   402篇
  国内免费   502篇
  2024年   11篇
  2023年   73篇
  2022年   185篇
  2021年   324篇
  2020年   218篇
  2019年   241篇
  2018年   266篇
  2017年   188篇
  2016年   245篇
  2015年   325篇
  2014年   404篇
  2013年   400篇
  2012年   506篇
  2011年   441篇
  2010年   280篇
  2009年   289篇
  2008年   281篇
  2007年   259篇
  2006年   200篇
  2005年   148篇
  2004年   165篇
  2003年   137篇
  2002年   94篇
  2001年   76篇
  2000年   78篇
  1999年   74篇
  1998年   47篇
  1997年   47篇
  1996年   52篇
  1995年   44篇
  1994年   31篇
  1993年   30篇
  1992年   27篇
  1991年   17篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1979年   8篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有6327条查询结果,搜索用时 15 毫秒
91.
92.
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC‐related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor‐β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.  相似文献   
93.
ObjectivesSalivary gland regeneration is closely related to the parasympathetic nerve; however, the mechanism behind this relationship is still unclear. The aim of this study was to evaluate the relationship between the parasympathetic nerve and morphological differences during salivary gland regeneration.Materials and MethodsWe used a duct ligation/deligation‐induced submandibular gland regeneration model of Sprague‐Dawley (SD) rats. The regenerated submandibular gland with or without chorda lingual (CL) innervation was detected by haematoxylin–eosin staining, real‐time PCR (RT‐PCR), immunohistochemistry and Western blotting. We counted the number of Ki67‐positive cells to reveal the proliferation process that occurs during gland regeneration. Finally, we examined the expression of the following markers: aquaporin 5, cytokeratin 7, neural cell adhesion molecule (NCAM) and polysialyltransferases.ResultsIntact parasympathetic innervation promoted submandibular gland regeneration. The process of gland regeneration was significantly repressed by cutting off the CL nerve. During gland regeneration, Ki67‐positive cells were mainly found in the ductal structures. Moreover, the expression of NCAM and polysialyltransferases‐1 (PST) expression in the innervation group was significantly increased during early regeneration and decreased in the late stages. In the denervated submandibular glands, the expression of NCAM decreased during regeneration.ConclusionsOur findings revealed that the regeneration of submandibular glands with intact parasympathetic innervation was associated with duct cell proliferation and the increased expression of PST and NCAM.  相似文献   
94.
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.  相似文献   
95.
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.  相似文献   
96.
为探明北京地区芦苇(Phragmites australis)的资源状态和多样性, 实地考察北京主要河流、湿地和水库, 发现北京地区芦苇总生长面积已超过600 hm2。芦苇染色体倍性以八倍体为主, 四倍体次之。在面积较大的湿地内, 八倍体单一芦苇群落占据优势地位; 而在城市的浅河内有形态和遗传性多样的混合种群。研究表明, 植物性状和倍性水平之间无显著相关性。在小清河发现了6种形态各异的芦苇克隆, 均属于叶绿体DNA片段的P单倍型; 其单倍体基因组大小为(0.499±0.019) pg, 变异系数为3.8%。这表明表型与单倍型之间也不具相关性。此外, 发现1个具有变叶特性的芦苇, 将其命名为金条芦苇。北京地区芦苇形态和遗传多样性为研究芦苇基因型与环境适应性之间的关系提供了珍贵的资源。  相似文献   
97.
Ti  Dongdong  Bai  Miaomiao  Li  Xiaolei  Wei  Jianshu  Chen  Deyun  Wu  Zhiqiang  Wang  Yao  Han  Weidong 《中国科学:生命科学英文版》2021,64(3):363-371
Impaired tumor-specific effector T cells contribute to tumor progression and unfavorable clinical outcomes. As a compensatory T cell-dependent cancer immunoediting strategy, adoptive T cell therapy(ACT) has achieved encouraging therapeutic results,and this strategy is now on the center stage of cancer treatment and research. ACT involves the ex vivo stimulation and expansion of tumor-infiltrating lymphocytes(TILs) with inherent tumor reactivity or T cells that have been genetically modified to express the cognate chimeric antigen receptor or T cell receptor(CAR/TCR), followed by the passive transfer of these cells into a lymphodepleted host. Primed T cells must provide highly efficient and long-lasting immune defense against transformed cells during ACT. Anin-depth understanding of the basic mechanisms of these living drugs can help us improve upon current strategies and design better next-generation T cell-based immunotherapies. From this perspective, we provide an overview of current developments in different ACT strategies, with a focus on frontier clinical trials that offer a proof of principle. Meanwhile, insights into the determinants of ACT are discussed, which will lead to more rational, potent and widespread applications in the future.  相似文献   
98.
Advances in high-throughput sequencing(HTS)have fostered rapid developments in the field of microbiome research,and massive microbiome datasets are now being generated.However,the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field.Here,we systematically summarize the advantages and limitations of micro-biome methods.Then,we recommend specific pipelines for amplicon and metagenomic analyses,and describe commonly-used software and databases,to help researchers select the appropriate tools.Furthermore,we introduce statistical and visualization methods suit-able for microbiome analysis,including alpha-and beta-diversity,taxonomic composition,difference compar-isons,correlation,networks,machine learning,evolu-tion,source tracing,and common visualization styles to help researchers make informed choices.Finally,a step-by-step reproducible analysis guide is introduced.We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the bio-logical significance behind the data.  相似文献   
99.
Ai  Xiaopeng  Dong  Xing  Guo  Ying  Yang  Peng  Hou  Ya  Bai  Jinrong  Zhang  Sanyin  Wang  Xiaobo 《Purinergic signalling》2021,17(2):229-240

Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.

  相似文献   
100.
The ADP-ribosylation factor-like proteins (ARLs) have been proved to regulate the malignant phenotypes of several cancers. However, the exact role of ARLs in gastric cancer (GC) remains elusive. In this study, we systematically investigate the expression status, interactive relations, potential pathways, genetic variations and clinical values of ARLs in GC. We find that ARLs are significantly dysregulated in GC and involved in various cancer-related pathways. Subsequently, machine learning models identify ARL4C as one of the two most significant clinical indicators among ARLs for GC. Furthermore, ARL4C silencing remarkably inhibits the growth and metastasis of GC cells both in vitro and in vivo. Moreover, enrichment analysis indicates that ARL4C is highly correlated with TGF-β1 signalling. Correspondingly, TGF-β1 treatment dramatically increases ARL4C expression and ARL4C knockdown inhibits the phosphorylation level of Smads, downstream factors of TGF-β1. Meanwhile, the coexpression of ARL4C and TGF-β1 worsens the prognosis of GC patients. Our work comprehensively demonstrates the crucial role of ARLs in the carcinogenesis of GC and the specific mechanisms underlying the GC-promoting effects of TGF-β1. More importantly, we uncover the great promise of ARL4C-targeted therapy in improving the efficacy of TGF-β1 inhibitors for GC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号