首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2900篇
  免费   324篇
  国内免费   24篇
  3248篇
  2023年   13篇
  2022年   23篇
  2021年   37篇
  2020年   32篇
  2019年   53篇
  2018年   68篇
  2017年   46篇
  2016年   71篇
  2015年   152篇
  2014年   146篇
  2013年   179篇
  2012年   220篇
  2011年   202篇
  2010年   121篇
  2009年   113篇
  2008年   124篇
  2007年   116篇
  2006年   136篇
  2005年   133篇
  2004年   123篇
  2003年   111篇
  2002年   87篇
  2001年   91篇
  2000年   93篇
  1999年   61篇
  1998年   31篇
  1997年   29篇
  1996年   31篇
  1994年   22篇
  1992年   43篇
  1991年   46篇
  1990年   36篇
  1989年   36篇
  1988年   31篇
  1987年   36篇
  1986年   28篇
  1985年   18篇
  1984年   30篇
  1983年   31篇
  1982年   25篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   23篇
  1977年   16篇
  1976年   19篇
  1975年   13篇
  1974年   12篇
  1973年   15篇
  1972年   11篇
排序方式: 共有3248条查询结果,搜索用时 15 毫秒
41.
Clostridium difficile is an etiological agent of pseudomembranous colitis and antibiotic-associated diarrhea. Adhesion is the crucial first step in bacterial infection. Thus, in addition to toxins, the importance of colonization factors in C. difficile-associated disease is recognized. In this study, we identified Fbp68, one of the colonization factors that bind to fibronectin (Fn), as a manganese-binding protein (K(D) = 52.70 ± 1.97 nM). Furthermore, the conformation of Fbp68 changed dramatically upon manganese binding. Manganese binding can also stabilize the structure of Fbp68 as evidenced by the increased T(m) measured by thermodenatured circular dichroism and differential scanning calorimetry (CD, T(m) = 58-65 °C; differential scanning calorimetry, T(m) = 59-66 °C). In addition, enhanced tolerance to protease K also suggests greatly improved stability of Fbp68 through manganese binding. Fn binding activity was found to be dependent on manganese due to the lack of binding by manganese-free Fbp68 to Fn. The C-terminal 194 amino acid residues of Fbp68 (Fbp68C) were discovered to bind to the N-terminal domain of Fn (Fbp68C-NTD, K(D) = 233 ± 10 nM, obtained from isothermal titration calorimetry). Moreover, adhesion of C. difficile to Caco-2 cells can be partially blocked if cells are pretreated with Fbp68C, and the binding of Fbp68C on Fn siRNA-transfected cells was significantly reduced. These results raise the possibility that Fbp68 plays a key role in C. difficile adherence on host cells to initiate infection.  相似文献   
42.
Stearoyl-CoA desaturase (EC 1.14.99.5) is a key enzyme in the biosynthesis of polyunsaturated fatty acids and the maintenance of the homeoviscous fluidity of biological membranes. The stearoyl-CoA desaturase cDNA in milkfish (Chanos chanos) was cloned by RT-PCR and RACE, and it was compared with the stearoyl-CoA desaturase in cold-tolerant teleosts, common carp and grass carp. Nucleotide sequence analysis revealed that the cDNA clone has a 972-bp open reading frame encoding 323 amino acid residues. Alignments of the deduced amino acid sequence showed that the milkfish stearoyl-CoA desaturase shares 79% and 75% identity with common carp and grass carp, and 63%–64% with other vertebrates such as sheep, hamsters, rats, mice, and humans. Like common carp and grass carp, the deduced amino acid sequence in milkfish well conserves three histidine cluster motifs (one HXXXXH and two HXXHH) that are essential for catalysis of stearoyl-CoA desaturase activity. However, RT-PCR analysis showed that stearoyl-CoA desaturase expression in milkfish is detected in the tissues of liver, muscle, kidney, brain, and gill, and more expression sites were found in milkfish than in common carp and grass carp. Phylogenic relationships among the deduced stearoyl-CoA desaturase amino acid sequence in milkfish and those in other vertebrates showed that the milkfish stearoyl-CoA desaturase amino acid sequence is phylogenetically closer to those of common carp and grass carp than to other higher vertebrates.  相似文献   
43.
44.
45.
Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells.  相似文献   
46.
47.
McHugh MM  Yin X  Kuo SR  Liu JS  Melendy T  Beerman TA 《Biochemistry》2001,40(15):4792-4799
This study examined the cellular response to DNA damage induced by antitumor enediynes C-1027 and neocarzinostatin. Treatment of cells with either agent induced hyperphosphorylation of RPA32, the middle subunit of replication protein A, and increased nuclear retention of RPA. Nearly all of the RPA32 that was not readily extractable from the nucleus was hyperphosphorylated, compared to < or =50% of the soluble RPA. Enediyne concentrations that induced RPA32 hyperphosphorylation also decreased cell-free SV40 DNA replication competence in extracts of treated cells. This decrease did not result from damage to the DNA template, indicating trans-acting inhibition of DNA replication. Enediyne-induced RPA hyperphosphorylation was unaffected by the replication elongation inhibitor aphidicolin, suggesting that the cellular response to enediyne DNA damage was not dependent on elongation of replicating DNA. Neither recovery of replication competence nor reversal of RPA effects occurred when treated cells were further incubated in the absence of drug. C-1027 and neocarzinostatin doses that caused similar levels of DNA damage resulted in equivalent increases in RPA32 hyperphosphorylation and RPA nuclear retention and decreases in replication activity, suggesting a common response to enediyne-induced DNA damage. By contrast, DNA damage induced by C-1027 was at least 5-fold more cytotoxic than that induced by neocarzinostatin.  相似文献   
48.

Background

Hemodialysis (HD) patients with bone fractures have an increased risk for death. However, the risks for mortality and atherosclerotic complications in incident HD patients subsequently with bone fractures are unknown.

Methods

Data derived from the Taiwan National Health Institute Research Database between January 1997 and December 2008 was analyzed. The enrolled patients included 3,008 incident HD patients subsequently with a single long bone fracture (LB Fx) and 2,070 incident HD patients subsequently with a single non-long bone fracture (NLB Fx). These patients were matched (1:5 ratio) for age, sex, and same duration of HD with incident HD patients who had no fractures and outcomes were measured over a 3-year follow-up.

Results

After demographic and co-morbidity adjustment, LB Fx increased the risk for overall mortality (HR = 1.59, p < 0.001) and stroke (HR = 1.09, p = 0.028) in incident HD patients. NLB Fx increased the risk for overall mortality (HR = 1.52, p < 0.001), stroke (HR = 1.19, p < 0.001), coronary artery disease (CAD), (HR = 1.13, p = 0.003), and peripheral arterial occlusive disease (PAOD), (HR = 1.41, p < 0.001) in incident HD patients. Moreover, incident patients subsequently with NLB Fx had significantly higher risks of CAD and PAOD than those subsequently with LB Fx.

Conclusions

The rates of mortality and stroke were significantly higher in incident HD patients subsequently with bone fractures than in matched patients without bone fractures. Incident HD patients subsequently with NLB Fx had significantly higher risks of CAD and PAOD than those subsequently with LB Fx and without bone fractures. Thus, incident HD patients subsequently with bone fractures should be closely followed for a higher mortality and possible development of atherosclerotic complications.  相似文献   
49.
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes.  相似文献   
50.
The intermediate filament (IF) cytoskeleton is a general feature of differentiated cells. Its molecular components, IF proteins, constitute a large family including the evolutionarily conserved nuclear lamins and the more diverse collection of cytoplasmic intermediate filament (CIF) proteins. In vertebrates, genes encoding CIFs exhibit cell/tissue type-specific expression profiles and are thus useful as differentiation markers. The expression of invertebrate CIFs, however, is not well documented. Here, we report a whole-genome survey of IF genes and their developmental expression patterns in the leech Helobdella, a lophotrochozoan model for developmental biology research. We found that, as in vertebrates, each of the leech CIF genes is expressed in a specific set of cell/tissue types. This allows us to detect earliest points of differentiation for multiple cell types in leech development and to use CIFs as molecular markers for studying cell fate specification in leech embryos. In addition, to determine the feasibility of using CIFs as universal metazoan differentiation markers, we examined phylogenetic relationships of IF genes from various species. Our results suggest that CIFs, and thus their cell/tissue-specific expression patterns, have expanded several times independently during metazoan evolution. Moreover, comparing the expression patterns of CIF orthologs between two leech species suggests that rapid evolutionary changes in the cell or tissue specificity of CIFs have occurred among leeches. Hence, CIFs are not suitable for identifying cell or tissue homology except among very closely related species, but they are nevertheless useful species-specific differentiation markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号