首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   16篇
  2024年   1篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   9篇
  2013年   17篇
  2012年   22篇
  2011年   16篇
  2010年   11篇
  2009年   6篇
  2008年   16篇
  2007年   9篇
  2006年   15篇
  2005年   15篇
  2004年   17篇
  2003年   7篇
  2002年   8篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
91.
Heterotrimeric G‐proteins consisting of Gα, Gβ and Gγ subunits play an integral role in mediating multiple signalling pathways in plants. A novel, recently identified plant‐specific Gγ protein, AGG3, has been proposed to be an important regulator of organ size and mediator of stress responses in Arabidopsis, whereas its potential homologs in rice are major quantitative trait loci for seed size and panicle branching. To evaluate the role of AGG3 towards seed and oil yield improvement, the gene was overexpressed in Camelina sativa, an oilseed crop of the Brassicaceae family. Analysis of multiple homozygous T4 transgenic Camelina lines showed that constitutive overexpression of AGG3 resulted in faster vegetative as well as reproductive growth accompanied by an increase in photosynthetic efficiency. Moreover, when expressed constitutively or specifically in seed tissue, AGG3 was found to increase seed size, seed mass and seed number per plant by 15%–40%, effectively resulting in significantly higher oil yield per plant. AGG3 overexpressing Camelina plants also exhibited improved stress tolerance. These observations draw a strong link between the roles of AGG3 in regulating two critical yield parameters, seed traits and plant stress responses, and reveal an effective biotechnological tool to dramatically increase yield in agricultural crops.  相似文献   
92.
Human CGI-58 (for comparative gene identification-58) and YLR099c, encoding Ict1p in Saccharomyces cerevisiae, have recently been identified as acyl-CoA-dependent lysophosphatidic acid acyltransferases. Sequence database searches for CGI-58 like proteins in Arabidopsis (Arabidopsis thaliana) revealed 24 proteins with At4g24160, a member of the α/β-hydrolase family of proteins being the closest homolog. At4g24160 contains three motifs that are conserved across the plant species: a GXSXG lipase motif, a HX4D acyltransferase motif, and V(X)3HGF, a probable lipid binding motif. Dendrogram analysis of yeast ICT1, CGI-58, and At4g24160 placed these three polypeptides in the same group. Here, we describe and characterize At4g24160 as, to our knowledge, the first soluble lysophosphatidic acid acyltransferase in plants. A lipidomics approach revealed that At4g24160 has additional triacylglycerol lipase and phosphatidylcholine hydrolyzing enzymatic activities. These data establish At4g24160, a protein with a previously unknown function, as an enzyme that might play a pivotal role in maintaining the lipid homeostasis in plants by regulating both phospholipid and neutral lipid levels.Acylation of glycerol-3-phosphate (G3P) is the first step in the biosynthesis of glycerolipids in plants. Most of the enzymes involved in this pathway were shown to be membrane bound (Somerville and Browse, 1991). However, a soluble G3P acyltransferase has been reported in plants, which acylates G3P to lysophosphatidic acid (LPA) in an acyl-(acyl carrier protein)-dependent manner (Murata and Tasaka, 1997). The role of other soluble enzymes in the glycerolipid biosynthesis pathway is well documented. Cytosolic monoacylglycerol acyltransferase (Tumaney et al., 2001), diacylglycerol acyltransferase (Saha et al., 2006), and LPA phosphatase (Shekar et al., 2002) were shown to be present in the immature seeds of Arachis hypogaea. Recently, cytosolic LPA phosphatase (Reddy et al., 2008) and phosphatidic acid (PA) phosphatase have also been reported in Saccharomyces cerevisiae (Han et al., 2006). In addition, we demonstrated earlier the presence of a soluble LPA acyltransferase (LPAAT) as a part of the cytosolic multienzyme complex for the synthesis of triacylglycerol (TG) in Rhodotorula glutinis (Gangar et al., 2001). In S. cerevisiae, Ict1p catalyzes the acylation of LPA to PA, thereby enhancing phospholipid biosynthesis under cellular stress. A Δict1 deletion strain was shown to be calcofluor white sensitive and exhibited a defective phospholipid biosynthesis, suggesting a role of Ict1p in the maintenance of the cell membranes (Ghosh et al., 2008a).BLAST analysis of the human genome with the Ict1p sequence resulted in the identification of a gene named CGI-58. Mutations in human CGI-58 are responsible for a rare autosomal recessive genetic disorder known as Chanarin Dorfman syndrome (Zechner et al., 2009). CGI-58 is a member of the α/β-hydrolase family of proteins and has a conserved lipase motif GXNXG, where the Ser is replaced by an Asn. Biochemical characterization of human CGI-58 revealed that it acylates LPA to PA. Heterologous overexpression in yeast showed that expression of CGI-58 enhanced the biosynthesis of total phospholipids, especially PA, phosphatidylethanolamine, and phosphatidylcholine (PC). CGI-58 was found to localize to the lipid bodies isolated from the mice white adipose tissues, but the LPAAT activity in the soluble fraction from adipose tissue was also attributed to CGI-58 (Ghosh et al., 2008b).So far, a soluble LPAAT from plants has not been identified, although the importance of such enzymes in other experimental systems has been envisaged (Tumaney et al., 2001; Ghosh et al., 2008a). Being aware of the important role of Ict1p and CGI-58 in phospholipid metabolism and in combating stress, we started a systematic search for CGI-58-like proteins in plants. The availability of the complete genome sequence of Arabidopsis (Arabidopsis thaliana) allowed us to perform a comprehensive genome-wide survey of CGI-58 like proteins in Arabidopsis. As will be described in this study, a BLAST analysis of CGI-58 in Arabidopsis revealed At4g24160 as its closest homolog. Biochemical characterization of At4g24160 showed its ability to acylate LPA to PA in an acyl-CoA-dependent manner. The recombinant protein has the capability to hydrolyze TG and PC to a lesser extent. Expression analysis of At4g24160 and its homologs suggests the significance of these genes under various stress conditions. In summary, At4g24160 is a soluble acyltransferase with lipase and phospholipase functions from Arabidopsis belonging to the α/β-hydrolase superfamily of proteins.  相似文献   
93.
94.
Detergents serve as means of solubilizing biological membranes and thus play an important role in purification and characterization of membrane proteins. We report here a simple method to estimate the amount of detergent bound to a protein or present in an aqueous solution. The method is based on the turbidity caused by the addition of a detergent to triolein. Detergent bound to an integral membrane protein, lysophosphatidic acid acyltransferase, was separated by native gel electrophoresis and the amount of detergent bound to the same was estimated. This method is applicable for Triton X-100, sodium dodecyl sulfate and zwitterionic detergent, and was validated in the presence of reagents commonly used in membrane protein solubilization and purification.  相似文献   
95.
The experiment was conducted to determine the effects of the inoculation of the probiotic and enterocin A-producing strain Enterococcus faecium EK13 on selected parameters of metabolic profile, gut microflora, growth, and health in newborn piglets of Slovak White Improved. Piglets for study were divided into two groups: one group (EK13 group, n=8) received strain EK13 per os once daily for 7 days (2ml per piglet, 10(9)CFU/mL of saline buffer). The control group of piglets (n=7) was given placebo-saline buffer. The experiment lasted 14 days. After 7 days, strain EK13 reached 9.8 log(10) CFU/g in faeces of E. faecium EK13 treated piglets while counts of Escherichia coli were significantly lower (P<0.01) than in piglets of the control group. The concentrations of total serum protein, calcium, haemoglobin, haematocrit, red blood cell count and index of phagocytic activity of leukocytes were significantly higher after application of strain EK13. On the other hand, cholesterol was significantly lower in the EK13 group of animals. On day 14, piglets were killed and samples of intestinal contents were taken. Total counts of bacteria in the intestinal contents (jejunum, ileum, caecum, colon) were not significantly influenced. The pH value was significantly lower (P<0.05) only in duodenum of piglets receiving E. faecium EK13. There was a significant higher concentration of lactic acid (P<0.01) and propionic acid in the colon (P<0.001) of the EK13 group. Application of E. faecium EK13 did not influence the daily body weight gain significantly.  相似文献   
96.
Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G proteins. To assess new roles for the Arabidopsis (Arabidopsis thaliana) Galpha subunit (GPA1), the Gbeta subunit (AGB1), and the candidate G-protein-coupled receptor (GCR1) in ABA signaling during germination and early seedling development, we utilized knockout mutants lacking one or more of these components. Our data show that GPA1, AGB1, and GCR1 each negatively regulates ABA signaling in seed germination and early seedling development. Plants lacking AGB1 have greater ABA hypersensitivity than plants lacking GPA1, suggesting that AGB1 is the predominant regulator of ABA signaling and that GPA1 affects the efficacy of AGB1 execution. GCR1 acts upstream of GPA1 and AGB1 for ABA signaling pathways during germination and early seedling development: gcr1 gpa1 double mutants exhibit a gpa1 phenotype and agb1 gcr1 and agb1 gcr1 gpa1 mutants exhibit an agb1 phenotype. Contrary to the scenario in guard cells, where GCR1 and GPA1 have opposite effects on ABA signaling during stomatal opening, GCR1 acts in concert with GPA1 and AGB1 in ABA signaling during germination and early seedling development. Thus, cell- and tissue-specific functional interaction in response to a given signal such as ABA may determine the distinct pathways regulated by the individual members of the G-protein complex.  相似文献   
97.
98.
Tumour markers are substances produced by malignant cells or by the organism as a response to cancer development. Determination of their levels can, therefore, be used to monitor the risk, presence and prognosis of a cancer disease or to monitor the therapeutic response or early detection of residual disease. Time-consuming imaging methods, examination of cerebrospinal fluid or tumour tissue and assays for hormones and tumour markers have been used for cancer diagnosis. However, no specific marker for diagnosis of childhood solid tumours has been discovered yet. In this study, metallothionein (MT) was evaluated as a prospective marker for such diseases. Serum metallothionein levels of patients with childhood solid tumours were determined using differential pulse voltammetry - Brdicka reaction. A more than 5-fold increase in the amount of metallothionein was found in sera of patients suffering from cancer disease, compared with those in sera of healthy donors. The average metallothionein level in the sera of healthy volunteers was 0.5 ± 0.2 μmol ? dm?3 and was significantly different (p<0.05, determined using the Schefe test) from the average MT level found in serum samples of patients suffering from childhood solid tumours (3.4 ± 0.8 μmol ? dm?3). Results found in this work indicate that the MT level in blood serum can be considered as a promising marker for diagnostics, prognosis and estimation of therapy efficiency of childhood tumours.  相似文献   
99.
Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.  相似文献   
100.
This study aimed to assess the variability in respect of titer and properties of xylanase from Trichoderma reesei SAF3 under both solid-state and submerged fermentation. SSF was initially optimized with different agro-residues and among them wheat bran was found to be the best substrate that favored maximum xylanase production of 219 U (gws)?1 at 96 h of incubation. The mycelial stage of the fungi and intracellular accumulation of Ca++ and Mg++ induced maximum enzyme synthesis. Inoculum level of 10 × 106 spores 5 g?1 of dry solid substrate and water activity of 0.6 were found to be optimum for xylanase production under SSF. Further optimization was made using a Box-Behnken design under response surface methodology. The optimal cultivation conditions predicted from canonical analysis of this model were incubation time (A) = 96–99 h, inoculum concentration (B) = 10 × 106 spores 5 g?1 of dry substrate, solid substrate concentration (C) = 10–12 g flask?1, initial moisture level (D) = 10 mL flask?1 (equivalent to a w  = 0.55) and the level of xylanase was 299.7 U (gws)?1. Subsequent verification of these levels agreed (97 % similar) with model predictions. Maximum amount of xylanase was recovered with water (6:1, v/w) and under shaking condition (125 rpm). Purified xylanase from SSF showed better stability in salt and pH, was catalytically and thermodynamically more efficient over enzyme from SmF, though molecular weight of both enzymes was identical (53.8 kDa).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号