首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   16篇
  2024年   1篇
  2022年   1篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   9篇
  2013年   17篇
  2012年   22篇
  2011年   16篇
  2010年   11篇
  2009年   6篇
  2008年   16篇
  2007年   9篇
  2006年   15篇
  2005年   15篇
  2004年   17篇
  2003年   7篇
  2002年   8篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
201.
The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellular membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid (McKbac) and utilized to construct the mutant virus McK(gKΔ31-68), carrying a 37-amino-acid deletion within the gK amino terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILRα). In contrast, the McK(gKΔ31-68) virus failed to enter into CHO-PILRα cells, while it entered CHO cells expressing HVEM and nectin-1 more efficiently than the McKbac virus. Both McKbac and McK(gKΔ31-68) viruses entered all CHO cells expressing HSV-1 receptors via a pH-independent pathway. The HSV-1(F) gBΔ28syn mutant virus, encoding a carboxyl-terminal truncated gB, causes extensive cell fusion. Previously, we showed that the gKΔ31-68 amino acid deletion abrogated gBΔ28syn virus-induced cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301–12313, 2009). Surprisingly, the gKΔ31-68/gBΔ28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILRα cells. Coimmunoprecipitation experiments revealed that both gK and PILRα bound gB in infected cells. Collectively, these results indicate that the amino terminus of gK is functionally and physically associated with the gB-PILRα protein complex and regulates membrane fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion.  相似文献   
202.
203.
Despite recent advances in medical procedures, cardiovascular disease remains a clinical challenge and the leading cause of mortality in the western world. The condition causes progressive smooth muscle cell (SMC) dedifferentiation, proliferation, and migration that contribute to vascular restenosis. The incidence of disease of the internal mammary artery (IMA), however, is much lower than in nearly all other arteries. The etiology of this IMA disease resistance is not well understood. Here, using paired primary IMA and coronary artery SMCs, serum stimulation, siRNA knockdowns, and verifications in porcine vessels in vivo, we investigate the molecular mechanisms that could account for this increased disease resistance of internal mammary SMCs. We show that the residue-specific phosphorylation profile of the retinoblastoma tumor suppressor protein (Rb) appears to differ significantly between IMA and coronary artery SMCs in cultured human cells. We also report that the differential profile of Rb phosphorylation may follow as a consequence of differences in the content of cyclin-dependent kinase 2 (CDK2) and the CDK4 phosphorylation inhibitor p15. Finally, we present evidence that siRNA-mediated CDK2 knockdown alters the profile of Rb phosphorylation in coronary artery SMCs, as well as the proliferative response of these cells to mitogenic stimulation. The intrinsic functional and protein composition specificity of the SMCs population in the coronary artery may contribute to the increased prevalence of restenosis and atherosclerosis in the coronary arteries as compared with the internal mammary arteries.  相似文献   
204.
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane''s rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.  相似文献   
205.
It is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.1% and 1% through diet during 13 weeks after the application of chemocarcinogen. After autopsy, histopathological and immunohistochemical analyses of rat mammary carcinomas were performed. Moreover, in vitro evaluation using MCF‐7 cells was carried out. Dietary administered CLO caused the dose‐dependent decrease in tumour frequency by 47.5% and 58.5% when compared to control. Analysis of carcinoma cells in animals showed bcl‐2, Ki67, VEGFA, CD24 and CD44 expression decrease and Bax, caspase‐3 and ALDH1 expression increase after high‐dose CLO administration. MDA levels were substantially decreased in rat carcinomas in both CLO groups. The evaluation of histone modifications revealed increase in lysine trimethylations and acetylations (H4K20me3, H4K16ac) in carcinomas after CLO administration. TIMP3 promoter methylation levels of CpG3, CpG4, CpG5 islands were altered in treated cancer cells. An increase in total RASSF1A promoter methylation (three CpG sites) in CLO 1 group was found. In vitro studies showed antiproliferative and pro‐apoptotic effects of CLO extract in MCF‐7 cells (analyses of cytotoxicity, Brdu, cell cycle, annexin V/PI, caspase‐7, Bcl‐2 and mitochondrial membrane potential). This study showed a significant anticancer effect of clove buds in the mammary carcinoma model in vivo and in vitro.  相似文献   
206.
The importance of ADA (adenosine deaminase) in the immune system and the role of its interaction with an ADA-binding cell membrane protein dipeptidyl peptidase IV (DPPIV), identical to the activated immune cell antigen, CD26, has attracted the interest of researchers for many years. To investigate the specific properties in the structure-function relationship of the ADA/DPPIV-CD26 complex, its soluble form, identical to large ADA (LADA), was isolated from human blood serum, human pleural fluid and bovine kidney cortex. The kinetic constants (Km and Vmax) of LADA and of small ADA (SADA), purified from bovine lung and spleen, were compared using adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) as substrates. The Michaelis constant, Km, evidences a higher affinity of both substrates (in particular of more toxic 2'-dAdo) for LADA and proves the modulation of toxic nucleoside neutralization in the extracellular medium due to complex formation between ADA and DPPIV-CD26. The values of Vmax are significantly higher for SADA, but the efficiency, Vmax/Km, in LADA-catalyzed 2'-dAdo deamination is higher than that in Ado deamination. The interaction of all enzyme preparations with derivatives of adenosine and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) was studied. 1-DeazaEHNA and 3-deazaEHNA demonstrate stronger inhibiting activity towards LADA, the DPPIV-CD26-bound form of ADA. The observed differences between the properties of the two ADA isoforms may be considered as a consequence of SADA binding with DPPIV-CD26. Both SADA and LADA indicated a similar pH-profile of adenosine deamination reaction with the optimum at pHs 6.5-7.5, while the pH-profile of dipeptidyl peptidase activity of the ADA/DPPIV-CD26 complex appeared in a more alkaline region.  相似文献   
207.
Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G‐protein complex. We have recently established that in Arabidopsis, the regulator of G‐protein signaling (RGS1) protein and a lipid‐hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase‐activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid‐hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys259) is directly involved in RGS1–PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid‐mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal–response output.  相似文献   
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号