首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   53篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   18篇
  2015年   24篇
  2014年   26篇
  2013年   25篇
  2012年   42篇
  2011年   42篇
  2010年   34篇
  2009年   29篇
  2008年   30篇
  2007年   24篇
  2006年   30篇
  2005年   24篇
  2004年   34篇
  2003年   28篇
  2002年   28篇
  2001年   14篇
  2000年   15篇
  1999年   15篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   15篇
  1991年   13篇
  1990年   14篇
  1989年   9篇
  1988年   8篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
91.
Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain–CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3''s lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP–CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP–CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.CENTROMERES are essential for chromosome inheritance, because they nucleate kinetochores, the protein complexes on eukaryotic chromosomes that attach to spindle microtubules. Despite the essential requirement for centromeres in chromosome segregation, their DNA sequences and the sequences of kinetochore proteins are highly variable. Kinetochores in Saccharomyces cerevisiae and related budding yeasts assemble on small, unique centromere DNAs (125 bp in S. cerevisiae) (Meraldi et al. 2006). Centromere DNAs in the fission yeast Schizosaccharomyces pombe are larger, consisting of a central core sequence of 4–5 kb, which binds kinetochore proteins, flanked by large inverted repeats whose heterochromatic nature is important for centromere function (the total size of the S. pombe centromere DNA is 35–110 kb). At the other extreme from small yeast centromeres are holocentric organisms, such as Caenorhabditis elegans, in which kinetochore proteins bind along the entire length of mitotic chromosomes (Dernburg 2001). Most plants and animals have extremely large centromere DNA tracts consisting of megabases of simple tandem repeats. The repeat sequence evolves extremely rapidly, and only a small fraction of the repeat array is likely to be bound by kinetochore proteins. Furthermore, kinetochores can be nucleated by noncentromeric DNA sequences in plant and animal cells (Amor and Choo 2002; Nagaki et al. 2004; Nasuda et al. 2005; Heun et al. 2006; Wade et al. 2009). Despite these findings, the maintenance of massive centromere repeat arrays in both animal and plant taxa suggests that repeats are a central feature of centromere biology in these organisms.Although centromere DNAs are extremely diverse, all eukaryote kinetochores contain the centromere-specific histone H3 variant CENH3 (originally described as CENP-A in human) (Henikoff and Dalal 2005; Black and Bassett 2008). CENH3 replaces conventional H3 specifically in a subset of centromere nucleosomes. It is essential for kinetochore function in all eukaryotes where this requirement has been tested. Conventional histones are among the most conserved proteins in eukaryote genomes. In contrast, CENH3 is rapidly evolving. The C-terminal histone-fold domain, which complexes with other histones to form the globular nucleosome core, can be aligned with conventional H3''s but evolves rapidly and shows signatures of adaptive evolution in some residues (Malik and Henikoff 2001; Talbert et al. 2002; Cooper and Henikoff 2004). The N-terminal tail domain of conventional histone H3 protrudes from the nucleosome core and is not resolved in the structure solved by X-ray crystallography (Luger et al. 1997). In CENH3, the tail domain evolves so rapidly that its sequence can barely be aligned between closely related species.Experiments in yeast and in animals have delineated functionally important regions within CENH3. S. cerevisiae kinetochores contain only a single CENH3/Cse4p nucleosome (Furuyama and Biggins 2007). In S. cerevisiae Cse4p, amino acid residues required for normal function are distributed throughout the histone-fold domain (Keith et al. 1999). The N-terminal tail of Cse4p contains an essential region termed the END domain, but overexpression of a Cse4p lacking the tail altogether can rescue a cse4 deletion mutant (Chen et al. 2000; Morey et al. 2004). In Drosophila melanogaster cells, CENH3/Cid from the distantly related D. bipectinata did not localize to kinetochores unless a specific region of the histone-fold domain, loop 1, was swapped with the corresponding region from D. melanogaster CENH3/Cid (Vermaak et al. 2002). In human, the histone-fold domain is important for centromere targeting (Sullivan et al. 1994). The functionally important region within the histone-fold domain was further defined by inserting loop 1 and the α-2 helix from CENH3/CENP-A (termed the CENP-A targeting domain, or CATD) into conventional H3 (Black et al. 2004). H3 containing the CATD acquires several functions of CENP-A when expressed in human cells. It localizes to kinetochores, binds the kinetochore protein CENP-N, has a rigid secondary structure when assembled into nucleosomes, and can restore normal chromosome segregation in cells depleted for CENP-A using RNA interference (RNAi) (Black et al. 2004, 2007a,b; Carroll et al. 2009).Despite these extensive studies, questions about structure–function relationships within CENH3 remain. CENH3 function may differ between small yeast centromeres and the large tandem repeat centromeres of animals and plants, particularly because larger centromere DNAs are likely to contain many more CENH3 nucleosomes and may require a higher level of organization. Experiments in D. melanogaster and in human cells have used RNAi to downregulate the endogenous protein, and a conditional knockout has been made in chicken DT-40 cells (Blower and Karpen 2001; Goshima et al. 2003; Regnier et al. 2005; Black et al. 2007b). These experiments are challenging because CENH3 is very stable. If preexisting CENH3 is partitioned equally between duplicated sister centromeres, its amount will be approximately halved at each cell division. Therefore the protein may persist for many cell divisions after induction of RNAi, as shown by Western blots indicating that ∼10% of endogenous CENH3 remains in human cells subjected to two rounds of RNAi (Black et al. 2007b).We have chosen to study CENH3 in the model plant A. thaliana, which combines facile genetics and transgenesis with centromere DNA structure that is similar to most plants and animals (megabases of tandem repeats with a repeating unit of 178 bp) (Murata et al. 1994; Copenhaver et al. 1999). Although Drosophila and mouse CENH3 knockout mutants have been characterized (Howman et al. 2000; Blower et al. 2006), a large-scale structure–function analysis of CENH3 has not been attempted in these organisms. A cenh3 null mutant in A. thaliana allows us to completely replace the endogenous protein with transgenic variants (Ravi and Chan 2010). Here we report four major conclusions regarding CENH3 function in A. thaliana: (1) CENH3 function requires an N-terminal histone tail domain, although either the CENH3 tail or the H3 tail can support mitotic chromosome segregation. (2) Inserting the CENP-A targeting domain of CENH3 into H3 does not confer CENH3 function. (3) Complementation of cenh3 by heterologous CENH3 requires that the species of origin be closely related to A. thaliana. (4) Localization of a heterologous CENH3 protein to kinetochores in the presence of native CENH3 does not necessarily indicate that it can complement a cenh3 mutant. Overall, our results indicate that requirements for CENH3 function in A. thaliana are more stringent that those obtained in human cells. They underscore the usefulness of comparative studies of centromere function using genetically tractable experimental organisms.  相似文献   
92.
Cheung CL  Huang QY  Ng MY  Chan V  Sham PC  Kung AW 《Human genetics》2006,120(3):354-359
Chromosome 1q has previously been linked to bone mineral density (BMD) variation in the general population in several genome-wide linkage studies in both humans and mouse model. The aim of present study is to replicate and fine map the QTL influencing BMD in chromosome 1q in southern Chinese. Twelve microsatellite markers were genotyped for a 57 cΜ region in the chromosome 1q in 306 southern Chinese families with 1,459 subjects. Each of these families was ascertained through a proband with BMD Z-scores less than −1.3 at the hip or spine. BMD (g/cm2) at the L1-4 lumbar spine, femoral neck (FN), trochanter and total hip was measured by dual-energy X-ray absortiometry. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. Four markers (D1S2878, D1S196, D1S452, and D1S218) achieved a LOD score greater than 1.0 with spine BMD, with the maximum multipoint LOD score of 2.36 at the marker D1S196. We did not detect a LOD score greater than 1.0 for BMD at the FN, trochanter, or total hip in multipoint linkage analyses. Our results present the first evidence for the presence of an osteoporosis susceptibility gene on chromosome 1q in non-Caucasian subjects. Further analyses of candidate genes are warranted to identify QTL genes and variants underlying the variations of BMD in this region.  相似文献   
93.
94.
95.
96.
A fluorescent zinc 2,2'-dipicolylamine coordination complex PSVue?794 (probe 1) is known to selectively bind to phosphatidylserine exposed on the surface of apoptotic and necrotic cells. In this study, we investigated the cell death targeting properties of probe 1 in myocardial ischemia-reperfusion injury. A rat heart model of ischemia-reperfusion was used. Probe 1, control dye, or 99mTc glucarate was intravenously injected in rats subjected to 30-minute and 5-minute myocardial ischemia followed by 2-hour reperfusion. At 90 minutes or 20 hours postinjection, myocardial uptake was evaluated ex vivo by fluorescence imaging and autoradiography. Hematoxylin-eosin and cleaved caspase-3 staining was performed on myocardial sections to demonstrate the presence of ischemia-reperfusion injury and apoptosis. Selective accumulation of probe 1 could be detected in the area at risk up to 20 hours postinjection. Similar topography and extent of uptake of probe 1 and 99mTc glucarate were observed at 90 minutes postinjection. Histologic analysis demonstrated the presence of necrosis, but only a few apoptotic cells could be detected. Probe 1 selectively accumulates in myocardial ischemia-reperfusion injury and is a promising cell death imaging tool.  相似文献   
97.
98.

Background

Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner''s dilemma and incorporating three mechanisms: (i) imitation and mutation, (ii) preferred selection on successful individuals, and (iii) networking effects.

Methodology/Principal Findings

We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner''s dilemma.

Conclusions/Significance

The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system''s composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.  相似文献   
99.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
100.
An experiment was conducted in weanling pigs (Landrace × Yorkshire × Duroc) to evaluate the effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence. One hundred and forty-four piglets (initial BW 5.96 ± 0.93kg) were randomly allotted to one of the four dietary treatments on the basis of their body weights. The basal diets for each phase (phase 1: days0 to 14; phase 2: days15 to 28) were formulated to contain minimal Fe and then supplemented with gradient levels of Fe (0, 50, 100, and 250mg/kg) from ferrous sulfate. Feces were collected on days14 and 28 and used for the analysis of microbial count and trace minerals. Eight piglets from each treatment (two piglets per pen) were bled at 0, 7, 14, 21, and 28days to determine their hematological and plasma Fe status. In addition, two piglets from each pen (eight piglets per treatment) were killed at days14 and 28 to determine liver mineral concentrations. Pigs fed supplemental 250ppm Fe showed lowest overall average daily gain (linear, p = 0.036). Diarrhea incidence was linearly increased (p < 0.001) with supplemental Fe level. On days14, coliform population in normal feces was increased (p = 0.036) linearly with supplemental Fe level, and there were higher (p = 0.043) coliform population and lower (p < 0.001) Bifidobacterium spp. in the diarrhea feces. Supplemental Fe linearly (p < 0.05) improved the total red blood cells, hemoglobin, plasma, and liver (p = 0.109) Fe status of pigs and also increased (linear and quadratic, p < 0.001) the fecal excretion of Fe on days14 and 28. It is concluded that increasing the dietary iron levels in piglets improved their hematological status and liver Fe content; however, higher dietary Fe levels might also be associated with the increased diarrhea incidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号