首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   85篇
  国内免费   8篇
  1534篇
  2024年   3篇
  2023年   11篇
  2022年   30篇
  2021年   43篇
  2020年   25篇
  2019年   31篇
  2018年   49篇
  2017年   40篇
  2016年   52篇
  2015年   82篇
  2014年   101篇
  2013年   91篇
  2012年   135篇
  2011年   118篇
  2010年   91篇
  2009年   62篇
  2008年   71篇
  2007年   79篇
  2006年   69篇
  2005年   64篇
  2004年   40篇
  2003年   36篇
  2002年   34篇
  2001年   29篇
  2000年   35篇
  1999年   19篇
  1998年   12篇
  1997年   9篇
  1996年   13篇
  1995年   4篇
  1994年   2篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1922年   1篇
  1899年   1篇
排序方式: 共有1534条查询结果,搜索用时 0 毫秒
121.
PINK1, linked to familial Parkinson''s disease, is known to affect mitochondrial function. Here we identified a novel regulatory role of PINK1 in the maintenance of complex IV activity and characterized a novel mechanism by which NO signaling restored complex IV deficiency in PINK1 null dopaminergic neuronal cells. In PINK1 null cells, levels of specific chaperones, including Hsp60, leucine-rich pentatricopeptide repeat-containing (LRPPRC), and Hsp90, were severely decreased. LRPPRC and Hsp90 were found to act upstream of Hsp60 to regulate complex IV activity. Specifically, knockdown of Hsp60 resulted in a decrease in complex IV activity, whereas antagonistic inhibition of Hsp90 by 17-(allylamino) geldanamycin decreased both Hsp60 and complex IV activity. In contrast, overexpression of the PINK1-interacting factor LRPPRC augmented complex IV activity by up-regulating Hsp60. A similar recovery of complex IV activity was also induced by coexpression of Hsp90 and Hsp60. Drug screening identified ginsenoside Re as a compound capable of reversing the deficit in complex IV activity in PINK1 null cells through specific increases of LRPPRC, Hsp90, and Hsp60 levels. The pharmacological effects of ginsenoside Re could be reversed by treatment of the pan-NOS inhibitor l-NG-Nitroarginine Methyl Ester (l-NAME) and could also be reproduced by low-level NO treatment. These results suggest that PINK1 regulates complex IV activity via interactions with upstream regulators of Hsp60, such as LRPPRC and Hsp90. Furthermore, they demonstrate that treatment with ginsenoside Re enhances functioning of the defective PINK1-Hsp90/LRPPRC-Hsp60-complex IV signaling axis in PINK1 null neurons by restoring NO levels, providing potential for new therapeutics targeting mitochondrial dysfunction in Parkinson''s disease.  相似文献   
122.
cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-β. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.  相似文献   
123.
Rats exposed to high +Gz forces in a small animal centrifuge (SAC) exhibit loss of neuronal function (isoelectric EEG), termed G-induced loss of consciousness (G-LOC). This phenomenon is presumably due to a reduction in cerebral blood flow (CBF) or ischemia. Ischemia induces various metabolic and physiologic changes including expression of immediate early genes (IEGs) in the brain. Expression of IEGs have been suggested to be reliable markers for neuronal response to external stimuli or stress. In the present study expression of IEGs c-fos, c-jun and stress response gene HSP70 were measured in the brains of rats subjected to six 30 s exposures of +22.5Gz in a small animal centrifuge. The level of c-fos, HSP70 and beta-actin mRNA were measured by both Northern blot and RT-PCR. Expression of c-jun was measured only by RT-PCR. Expression of c-fos and c-jun was significantly stimulated at 0.5, 15, 30 and 60 min post-centrifugation. The level of HSP70 mRNA was significantly higher only at 60 and 180 min post-centrifugation. Measurement of metabolities showed a significant increase in lactate and a decrease in Cr-P level at 30 s and 15 min post-centrifugation, respectively. Lactate, but not Cr-P and ATP levels were restored to control levels by 60 min post-centrifugation. It is concluded that the transient expression of c-fos, c-jun and HSP70 mRNA is stimulated by repeated ischemic/reperfusion episodes induced by high acceleration stress.  相似文献   
124.
125.
Sixteen derivatives of N-acetyl-3-O-methyldopamine (NAMDA), an inhibitor of BH4 synthesis, were designed and synthesized. The ability of these derivatives to inhibit NO and BH4 production by lipopolysaccharide-stimulated BV-2 microglial cells was determined. While NAMDA at 100 microM inhibited NO and BH4 production by only about 20%, its catecholamide 8, indole 23 derivative, 13, and N-acetyl tetrahydroisoquinoline 25 inhibited the NO production by >50% at the same concentration. In particular, 13 and 25 inhibited both NO and BH4 production to similar degrees, which suggested that these compounds might inhibit NO production by blocking BH4-dependent dimerization of the newly synthesized iNOS monomer.  相似文献   
126.
Summary Protoplasts were isolated from leaf mesophyll of hybrid poplar (Populus nigra X P. maximowiczii) with a mean yield of 10.4 x 106 protoplasts per g fresh weight using 2.0% Cellulase Onozuka R-10, 0.8% Macerozyme R-10, 1.2% Hemicellulase, 2.0% Driselase, and 0.05% Pectolyase Y-23 with CPW salts solution containing 0.6 M mannitol, 0.002 M DTT, 3 mM MES at pH 5.6. A liquid plating method produced the highest frequency of dividing protoplasts (48.6%) using an MS medium without NH4NO3. The highest percent of colony formation was 22.8%, produced with fabric supported semi-solid (0.5% w/v) agar plating method using the same culture medium. Growing cell colonies and/or micro-calli were transferred to a fresh semisolid agar medium containing 0.44 M BAP and 9.0 M 2,4-D. Multiple shoots were produced from protoplast-derived callus after culture on MS medium containing 6.8 M zeatin. After root induction on half-strength MS medium that lacked growth regulators, shoots were transferred to pots containing artificial soil mix.Abbreviations CPW Cell and Potoplast Wash solution - LPM Liquid Plating Method - LDM Liquid Drop Method - HDM Hanging Drop Method - FSPM Fabric supported Semi-solid agar Plating Method - DTT Dithiothreitol - MES 2-(N-morpholino) ethane sulfonic acid - BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxy acetic acid - NAA -naphthalene acetic acid - MS Murashige and Skoog (1962)  相似文献   
127.
128.
129.
Polyadenylation of pre‐mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre‐mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid‐independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms.  相似文献   
130.
Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9?±?2.4 in the vaccination group (Vac), but 15.2?±?6.5 in the group treated with DON and vaccine (DON?+?Vac). The IgA and IgG was not different in the DON, Vac an,d DON?+?Vac groups. IgM was significantly lower only in the DON?+?Vac group. However IgE was significantly increased in the Vac and DON?+?Vac group, but no change was observed between the Vac and DON?+?Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号