首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7641篇
  免费   628篇
  国内免费   20篇
  8289篇
  2024年   10篇
  2023年   72篇
  2022年   153篇
  2021年   256篇
  2020年   118篇
  2019年   185篇
  2018年   224篇
  2017年   211篇
  2016年   268篇
  2015年   407篇
  2014年   417篇
  2013年   501篇
  2012年   628篇
  2011年   572篇
  2010年   378篇
  2009年   284篇
  2008年   390篇
  2007年   402篇
  2006年   343篇
  2005年   334篇
  2004年   244篇
  2003年   219篇
  2002年   254篇
  2001年   174篇
  2000年   225篇
  1999年   146篇
  1998年   62篇
  1997年   37篇
  1996年   46篇
  1995年   50篇
  1994年   36篇
  1993年   32篇
  1992年   74篇
  1991年   65篇
  1990年   64篇
  1989年   61篇
  1988年   50篇
  1987年   36篇
  1986年   42篇
  1985年   44篇
  1984年   27篇
  1983年   23篇
  1982年   12篇
  1981年   18篇
  1980年   11篇
  1979年   15篇
  1978年   12篇
  1977年   14篇
  1974年   7篇
  1972年   7篇
排序方式: 共有8289条查询结果,搜索用时 15 毫秒
91.
Ascomycete yeasts that both ferment and assimilate xylose were reported previously as associates of insects living in woody substrates. Most notable have been reports of Pichia stipitis-like yeasts that are widely associated with the wood-boring beetle, Odontotaenius disjunctus (Coleoptera: Passalidae), in the eastern United States. Our continuing investigation of insect gut yeasts has lead to the discovery of two new xylose-fermenting yeasts that phylogenetic analysis places as sister taxa. The beetle hosts, O. disjunctus and Phrenapates bennetti (Coleoptera: Tenebrionidae), are similar in habitat and appearance, and the presence of similar gut yeasts is an additional common feature between them. Here we describe the new yeast genus Spathaspora, the type species S. passalidarum, and its sister taxon Candida jeffriesii and discuss their natural history, including a comparison with Pichia stipitis, another member of a guild of xylose-fermenting yeasts with similar metabolic traits. In addition a morphologically distinct yeast ascospore type is described for Spathaspora.  相似文献   
92.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
93.
Steroid concentrations during late pregnancy and early lactation may be affected by both a female's reproductive history and her current condition, and may in turn predict subsequent life-history events, such as offspring survival. This study investigated these relationships in a wild primate population through the use of fecal steroid analysis in repeated sampling of peripartum baboons (Papio cynocephalus). Fecal samples were collected from 32 females in five groups within the Amboseli basin during 8 weeks prior to parturition and 13 weeks postpartum. From December 1999 through February 2002, 176 fecal samples were collected from individuals representing 39 peripartum periods. Fecal concentrations of progestins (fP), estrogen metabolites (fE), glucocorticoids (fGC), and testosterone metabolites (fT) were measured by radioimmunoassay. Steroid concentrations declined from late pregnancy to lactation, and the decline was greatest and most precipitous for fE and fP. Primiparous females had significantly higher mean fE concentrations in each of the last 2 months of pregnancy compared to multiparous females. Among multiparous females, fE and fT were significantly higher during late pregnancy in females carrying a male fetus compared to those carrying a female fetus. During early lactation, high fT in young mothers predicted subsequent infant death during the first year of life. These findings illustrate the potential power of repeated fecal-steroid sampling to elucidate mechanisms of life-history variability in natural populations. They also document significant differences in hormone profiles among subgroups, and highlight that such normative subgroup information is essential for interpreting individual variability in hormone-behavior associations.  相似文献   
94.
Macrophages are important mediators of the immune response to infection by virtue of their ability to secrete cytokines that trigger inflammation. Toll-like receptors (TLRs) are largely responsible for meditating the activation of macrophages by pathogens. IRAK-1 is a proximal protein kinase in TLR signalling pathways and hence its activation must be tightly regulated. However, the mechanisms which control the activation of IRAK-1 are poorly understood. IRAK-1 contains a death domain at its N-terminus that mediates its interaction with other death domain containing proteins, a central Ser/Thr kinase domain, and a C-terminal domain that contains binding motifs for TRAF6. We show here that deletion of the death domain or the majority of the C-terminal domain markedly enhanced the capacity of IRAK-1 to activate NF-κB in a TLR-independent manner in RAW 264.7 macrophages. Furthermore, the C-terminal truncation mutant spontaneously oligomerised and formed complexes with the negative regulator IRAK-M in the absence of TLR activation. In contrast to the binding of IRAK-M to IRAK-1, the death domain of IRAK-1 was not required for the interaction of IRAK-4 with IRAK-1. On the basis of these results we propose a model in which IRAK-1 is held in a closed, inactive conformation via an intramolecular mechanism involving its C-terminal domain and possibly the death domain. Phosphorylation of IRAK-1 by IRAK-4 in response to TLR activation may then release IRAK-1 from the inhibitory constraint exerted by its C-terminal domain.  相似文献   
95.
To examine the establishment and maintenance of trophectoderm (TE) lineage in somatic cloned blastocysts, the expression of Cdx2, a key molecule for specification of TE fate, was immunohistochemically examined simultaneously with Oct4 expression. Cloned mouse embryos were made by nuclear transfer using cumulus cells, tail-tip fibroblasts, and embryonic stem cells. After 96 h of culture, the rates of Oct4-expressing blastocysts were as low as 50% and 60% for cumulus and fibroblast clones, respectively. However, regardless of Oct4 expression, the majority of those cloned blastocysts (> 90%) normally expressed Cdx2. Thus, even though somatic cloned embryos have reduced potential to produce the inner cell mass lineage, the TE lineage can be established and maintained.  相似文献   
96.
97.
Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.  相似文献   
98.

Background

Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization.

Methods

In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep.

Results

The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation.

Conclusion

Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA with a size range suitable for delivery to the lower respiratory airways.  相似文献   
99.
The thermo-sensititve genic male-sterile (TGMS) gene in rice can alter fertility in response to temperature and is useful in the two-line system of hybrid rice production. However, little is known about the TGMS gene at the molecular level. The objective of this study was to identify molecular markers tightly linked with the TGMS gene and to map the gene onto a specific rice chromosome. Bulked segregant analysis of an F2 population from 5460s (a TGMS mutant line) x Hong Wan 52 was used to identify RAPD markers linked to the rice TGMS gene. Four hundred RAPD primers were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants; of these, 4 primers produced polymorphic products. Most of the polymorphic fragments contained repetitive sequences. Only one singlecopy sequence fragment was found, a 1.2-kb fragment amplified by primer OPB-19 and subsequently named TGMS1.2. TGMS1.2 was mapped on chromosome 8 with a RIL population and confirmed by remapping with a DHL population. Segregation analysis using TGMS1.2 as a probe indicated that TGMS1.2 both consegregated and was lined with the TGMS gene in this population. It is located about 6.7 cM from the TGMS gene. As TGMS1.2 is linked to the TGMS gene, the TGMS gene must be located on chromosome 8.This research was supported by the Rockefeller Foundation and China National High-Tech Research and Development Program. The first author is a Rockefeller Career Fellow at Texas Tech University  相似文献   
100.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号