首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
21.
Schizophrenia is a mental illness affecting the normal lifestyle of adults and early adolescents incurring major symptoms as jumbled speech, involvement in everyday activities eventually got reduced, patients always struggle with attention and memory, reason being both the genetic and environmental factors responsible for altered brain chemistry and structure, resulting in schizophrenia and associated orphan diseases. The network biology describes the interactions among genes/proteins encoding molecular mechanisms of biological processes, development, and diseases. Besides, all the molecular networks, protein-protein Interaction Networks have been significant in distinguishing the pathogenesis of diseases and thereby drug discovery. The present meta-analysis prioritizes novel disease indications viz. rare and orphan diseases associated with target Glutamate Ionotropic Receptor NMDA Type Subunit 1, GRIN1 using text mining knowledge-based tools. Furthermore, ZINC database was virtually screened, and binding conformation of selected compounds was performed and resulted in the identification of Narciclasine (ZINC04097652) and Alvespimycin (ZINC73138787) as potential inhibitors. Furthermore, docked complexes were subjected to MD simulation studies which suggests that the identified leads could be a better potential drug to recuperate schizophrenia.  相似文献   
22.
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.  相似文献   
23.
Polystichum squarrosum fern fed (30% w/w) rats showed moderate mortality, decrease in body weight, less body fat and splenomegaly. On post-mortem examination, significant gross lesions were not seen in sacrificed animals. Histopathologically, Polystichum fed rats showed dilated Virchow Robin's space in brain, mild to moderate vascular changes likeoedema, engorgement of blood vessels and haemorrhages in most of the visceral organs, interstitial pneumonia in lungs, focal necrosis and generalised vacuolative degenerative changes in liver, more haemosiderin deposition and presence of higher number of megakaryocytes in spleen, shrunken glomeruli, more peri-glomerular space and more number of glomeruli per microscopic field in kidneys, focal hyperplasia of urinary bladder and moderate to marked depletion of germinal epithelium and spermatids in seminiferous tubules of testes. Pathologically, progressive changes were observed only in liver, urinary bladder and testes on 180 days post feeding (DPF). One fern fed rat sacrificed on 135 DPF showed hepatic tumour which was diagnosed as hepatocellular carcinoma. The results showed that P. squarrosum produced almost comparable pathological changes/preneoplastic lesions as reported in bracken fern fed animals. Long term exposure studies (i.e. 2 yrs) are desired.  相似文献   
24.

Background

Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.

Results

A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands.

Conclusions

This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. S-palmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.
  相似文献   
25.

Background

Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14 knockout studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling, in a tissue specific manner. Retinal cells are post-mitotic tissue, and insulin receptor (IR) activation is essential for retinal neuron survival. Retinal cells express protein tyrosine phosphatase-1B (PTP1B), which dephosphorylates IR and Grb14, a pseudosubstrate inhibitor of IR. This project asks the following major question: in retinal neurons, how does the IR overcome inactivation by PTP1B and Grb14?

Results

Our previous studies suggest that ablation of Grb14 results in decreased IR activation, due to increased PTP1B activity. Our research propounds that phosphorylation in the BPS region of Grb14 inhibits PTP1B activity, thereby promoting IR activation. We propose a model in which phosphorylation of the BPS region of Grb14 is the key element in promoting IR activation, and failure to undergo phosphorylation on Grb14 leads to both PTP1B and Grb14 exerting their negative roles in IR. Consistent with this hypothesis, we found decreased phosphorylation of Grb14 in diabetic type 1 Ins2Akita mouse retinas. Decreased retinal IR activation has previously been reported in this mouse line.

Conclusions

Our results suggest that phosphorylation status of the BPS region of Grb14 determines the positive or negative role it will play in IR signaling.
  相似文献   
26.
Toto bodies are eosinophilic structures that resemble the cells of the superficial cell layer of the oral epithelium. Toto bodies commonly are associated with inflammatory gingival and other mucosal lesions including pyogenic granuloma, irritational fibroma, epulis fissuratum, peripheral giant cell granuloma and inflammatory hyperplastic gingivitis. We evaluated staining characteristics of Toto bodies to establish their origin and to identify their significance in lesions. We investigated pyogenic granuloma, fibroma and leukoplakia with epithelium that exhibited Toto bodies after hematoxylin and eosin (staining. Sections were stained with Alcian blue, periodic acid-Schiff and Ayoub-Shklar stains to evaluate staining intensity and distribution. More Toto bodies were found in pyogenic granuloma than in fibroma and leukoplakia. PAS and Alcian blue staining exhibited mild intensity and did not establish the origin of Toto bodies. High staining intensity and diffuse distribution of stain was observed using Ayoub-Shklar staining, which indicated that Toto bodies originate from keratin.  相似文献   
27.
Aeromonas hydrophila is a major bacterial pathogen associated with hemorrhagic septicemia in aquatic and terrestrial animals including humans. There is an urgent need to develop molecular and immunological assays for rapid, specific and sensitive diagnosis. A new set of primers has been designed for detection of thermostable hemolysin (TH) gene (645 bp) from A. hydrophila, and sensitivity limit for detection of TH gene was 5 pg. The TH gene was cloned, sequenced and analyzed. The G+C content was 68.06%; and phylogeny was constructed using TH protein sequences which had significant homology with those for thermostable and other hemolysins present in several bacterial pathogens. In addition, we have predicted the four and eight T-cell epitopes for MHC class I and II alleles, respectively. These results provide new insight for TH protein containing antigenic epitopes that can be used in immunoassays and also designing of thermostable vaccines.  相似文献   
28.
Growing antimicrobial resistance of the pathogens against multiple drugs posed a serious threat to the human health worldwide. This fueled the need of identifying the novel therapeutic targets that can be used for developing new class of the drugs. Recently, there is a substantial rise in the rate of Clostridium infections as well as in the emergence of virulent and antibiotic resistant strains. Hence, there is an urgent need for the identification of potential therapeutic targets and the development of new drugs for the treatment and prevention of Clostridium infections. In the present study, a combinatorial approach involving systems biology and comparative genomics strategy was tested against Clostridium botulinum ATCC 3502 and Clostridium difficile str. 630 pathogens, to render potential therapeutic target at qualitative and quantitative level. This resulted in the identification of five common (present in both the pathogens, 34 in C. botulinum ATCC 3502 and 42 in C. difficile str. 630) drug targets followed by virtual screening–based identification of potential inhibitors employing molecular docking and molecular dynamics simulations. The identified targets will provide a solid platform for the designing of novel wide-spectrum lead compounds capable of inhibiting their catalytic activities against multidrug-resistant Clostridium in the near future.  相似文献   
29.
Pyrazinamide is an essential first-line antitubercular drug which plays pivotal role in tuberculosis treatment. It is a prodrug that requires amide hydrolysis by mycobacterial pyrazinamidase enzyme for conversion into pyrazinoic acid (POA). POA is known to target ribosomal protein S1 (RpsA), aspartate decarboxylase (PanD), and some other mycobacterial proteins. Spontaneous chromosomal mutations in RpsA have been reported for phenotypic resistance against pyrazinamide. We have constructed and validated 3D models of the native and Δ438A mutant form of RpsA protein. RpsA protein variants were then docked to POA and long range molecular dynamics simulations were carried out. Per residue binding free-energy calculations, free-energy landscape analysis, and essential dynamics analysis were performed to outline the mechanism underlying the high-level PZA resistance conferred by the most frequently occurring deletion mutant of RpsA. Our study revealed the conformational modulation of POA binding site due to the disruptive collective modes of motions and increased conformational flexibility in the mutant than the native form. Residue wise MMPBSA decomposition and protein-drug interaction pattern revealed the difference of energetically favorable binding site in the wild-type (WT) protein in comparison with the mutant. Analysis of size and shape of minimal energy landscape area delineated higher stability of the WT complex than the mutant form. Our study provides mechanistic insights into pyrazinamide resistance in Δ438A RpsA mutant, and the results arising out of this study will pave way for design of novel and effective inhibitors targeting the resistant strains of Mycobacterium tuberculosis.  相似文献   
30.
In the present study, we report that somatostatin receptor 2 (SSTR2) plays a crucial role in modulation of β1AR and β2AR mediated signaling pathways that are associated with increased intracellular Ca2 + and cardiac complications. In H9c2 cells, SSTR2 colocalizes with β1AR or β2AR in receptor specific manner. SSTR2 selective agonist inhibits isoproterenol and formoterol stimulated cAMP formation and PKA phosphorylation in concentration dependent manner. In the presence of SSTR2 agonist, the expression of PKCα and PKCβ was comparable to the basal condition, however SSTR2 agonist inhibits isoproterenol or formoterol induced PKCα and PKCβ expression, respectively. Furthermore, the activation of SSTR2 not only inhibits calcineurin expression and its activity, but also blocks NFAT dephosphorylation and its nuclear translocation. SSTR2 selective agonist abrogates isoproterenol mediated increase in cell size and protein content (an index of hypertrophy). Taken together, the results described here provide direct evidence in support of cardiac protective role of SSTR2 via modulation of Ca2 + associated signaling pathways attributed to cardiac hypertrophy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号