排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
Dukka B KC 《BMC structural biology》2009,9(1):12-9
Background
Common structural biology methods (i.e., NMR and molecular dynamics) often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA) is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles. 相似文献2.
3.
Marion Edmonds Smith Florentino P. Somera Terry J. Sims 《Journal of neurochemistry》1985,45(4):1205-1212
The enzyme UDP-N-acetylglucosamine: dolichyl phosphate, N-acetylglucosamine-1-phosphate transferase initiates the synthesis of the oligosaccharide chain of complex-type glycoproteins. In view of the high content of glycoprotein in peripheral nerve myelin, the properties of this enzyme, its changes with age, and the effect of the specific inhibitor tunicamycin were investigated. The enzyme activity in rat peripheral nerve homogenate was completely dependent on the presence of exogenous dolichyl phosphate as well as Mg2+ and a detergent (Triton X-100) and was also greatly stimulated by a high salt concentration (0.4 M KCl) and AMP. The highest specific activity was present in the postmitochondrial membranes. The specific activity in postmitochondrial membranes in the presence of exogenous dolichyl phosphate reached a maximum at 17 days and remained relatively high throughout development, up to 2 years of age, but the activity was much lower when dolichyl phosphate was not added. This indicates that the enzyme level does not decrease with age, but that the content of the lipid cofactor may limit glycoprotein synthesis in vivo. Tunicamycin (5 micrograms) was injected intraneurally into 24-day-old rat sciatic nerve, and the enzyme was assayed from 1 to 24 days after injection. The specific activity of the transferase remained at low levels (5-40% of the level in control nerve) in most injected nerves assayed throughout this postinjection period. A protein previously identified as the unglycosylated P0 protein was synthesized in vitro by the tunicamycin-injected nerve and could be demonstrated to be incorporated into myelin in large amounts at 2 days and in small amounts at 6 days after injection.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
Mijia Lu Yuexiu Zhang Piyush Dravid Anzhong Li Cong Zeng Mahesh KC Sheetal Trivedi Himanshu Sharma Supranee Chaiwatpongsakorn Ashley Zani Adam Kenney Chuanxi Cai Chengjin Ye Xueya Liang Jianming Qiu Luis Martinez-Sobrido Jacob S. Yount Prosper N. Boyaka Shan-Lu Liu Mark E. Peeples Amit Kapoor Jianrong Li 《Journal of virology》2021,95(20)
6.
Plasmonics - This study shows development of highly sensitive and stable localized surface plasmon resonance (LSPR)-active U-bent glass and polymeric optical fiber (GOF and POF) sensor probes by a... 相似文献
7.
Marion Edmonds Smith F. Paul Somera Robert Saldivar Luca Massacesi Jacqueline Trotter 《Journal of neurochemistry》1984,43(6):1635-1641
DNA levels were measured in the spinal cords of Lewis rats during the development of and recovery from experimental allergic encephalomyelitis (EAE). Spinal cord DNA was first increased 11 days after immunizing the rats with guinea pig myelin and rose to levels four times that of the Freund's adjuvant controls at day 14, then subsided after day 22. Spinal cord DNA was still 150% of control levels 60 days after immunization. These DNA changes were compared with fluctuations in spinal cord acid proteinase in the same animals. Acid proteinase activity in EAE spinal cord increased later than the rise in DNA and attained a level of 170% of control at days 15-17, then subsided. Spinal cord DNA was higher in rats immunized with whole myelin than in those administered equivalent amounts of purified myelin basic protein. Furthermore DNA was higher in spinal cords of rats immunized with a larger dose of myelin (1.0 mg) than with a lower amount (0.5 mg). Various protease inhibitors including pepstatin, nitrophenyl p-guanidino benzoate, polylysine, and dipropionyl rhein, previously shown to protect Lewis rats against EAE, suppressed the increase of DNA in the spinal cord. Measurement of DNA increases in the spinal cord of EAE animals provides a convenient reproducible measurement of the severity of inflammation in the CNS and provides an objective criterion for assessment of the efficacy of various agents screened as possible therapeutic treatment for multiple sclerosis. 相似文献
8.
Zeyuan Song Tao Wu Jinpeng Sun Haoran Wang Feng Hua Yap San Min Nicolas Rupesh KC Kun Chen Zhen Jin Jun Liu Mingshun Zhang 《Journal of cellular and molecular medicine》2021,25(7):3272-3283
Excessive post-epidural fibrosis is a common cause of recurrent back pain after spinal surgery. Though various treatment methods have been conducted, the safe and effective drug for alleviating post-epidural fibrosis remains largely unknown. Metformin, a medicine used in the treatment of type 2 diabetes, has been noted to relieve fibrosis in various organs. In the present study, we aimed to explore the roles and mechanisms of metformin in scar formation in a mouse model of laminectomy. Post-epidural fibrosis developed in a mouse model of laminectomy by spinous process and the T12-L2 vertebral plate with a rongeur. With the administration of metformin, post-epidural fibrosis was reduced, accompanied with decreased collagen and fibronectin in the scar tissues. Mechanistically, metformin decreased fibronectin and collagen deposition in fibroblast cells, and this effect was dependent on the HMGB1/TLR4 and TGF-β1/Smad3 signalling pathways. In addition, metformin influenced the metabolomics of the fibroblast cells. Taken together, our study suggests that metformin may be a potential option to mitigate epidural fibrosis after laminectomy. 相似文献
9.
Andrew MF Liu Rico KH Lo Emily X Guo Maurice KC Ho Richard D Ye Yung H Wong 《BMC structural biology》2011,11(1):17
Background
G protein-coupled receptors constitute the largest family of cell surface receptors in the mammalian genome. As the core of the G protein signal transduction machinery, the Gα subunits are required to interact with multiple partners. The GTP-bound active state of many Gα subunits can bind a multitude of effectors and regulatory proteins. Yet it remains unclear if the different proteins utilize distinct or common structural motifs on the Gα subunit for binding. Using Gα16 as a model, we asked if its recently discovered adaptor protein tetratricopeptide repeat 1 (TPR1) binds to the same region as its canonical effector, phospholipase Cβ (PLCβ). 相似文献10.
Frankenswine,or bringing home the bacon: How close are we to clinical trials in xenotransplantation?
David KC Cooper 《Organogenesis》2008,4(1):1-10
Xenotransplantation—specifically from pig into human—could resolve the critical shortage of organs, tissues and cells for clinical transplantation. Genetic engineering techniques in pigs are relatively well-developed and to date have largely been aimed at producing pigs that either (1) express high levels of one or more human complement-regulatory protein(s), such as decay-accelerating factor or membrane cofactor protein, or (2) have deletion of the gene responsible for the expression of the oligosaccharide, Galα1,3Gal (Gal), the major target for human anti-pig antibodies, or (3) have both manipulations. Currently the transplantation of pig organs in adequately-immunosuppressed baboons results in graft function for periods of 2–6 months (auxiliary hearts) and 2–3 months (life-supporting kidneys). Pig islets have maintained normoglycemia in diabetic monkeys for >6 months. The remaining immunologic barriers to successful xenotransplantation are discussed, and brief reviews made of (1) the potential risk of the transmission of an infectious microorganism from pig to patient and possibly to the public at large, (2) the potential physiologic incompatibilities between a pig organ and its human counterpart, (3) the major ethical considerations of clinical xenotransplantation, and (4) the possible alternatives that compete with xenotransplantation in the field of organ or cell replacement, such as mechanical devices, tissue engineering, stem cell biology and organogenesis. Finally, the proximity of clinical trials is discussed. Islet xenotransplantation is already at the stage where clinical trials are actively being considered, but the transplantation of pig organs will probably require further genetic modifications to be made to the organ-source pigs to protect their tissues from the coagulation/anticoagulation dysfunction that plays a significant role in pig graft failure after transplantation in primates.Key words: islets, pancreatic, genetic engineering, organogenesis, pig, xenotransplantation 相似文献