首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   39篇
  国内免费   1篇
  2023年   5篇
  2022年   21篇
  2021年   25篇
  2020年   33篇
  2019年   53篇
  2018年   30篇
  2017年   26篇
  2016年   43篇
  2015年   32篇
  2014年   32篇
  2013年   36篇
  2012年   28篇
  2011年   22篇
  2010年   19篇
  2009年   16篇
  2008年   8篇
  2007年   12篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1999年   1篇
  1998年   2篇
  1992年   3篇
  1991年   1篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
401.
Vibrio cholerae is considered one of the major health threats in developing countries. Lack of efficient vaccine, short incubating time of the disease, and bacterium ability to survive in aquatic environment have made cholera one of the most epidemic diseases yet known. The lipopolysaccharide is one of the bacterium key antigens used to classify V. cholerae into 206 serogroups. V. cholerae serogroup O1 is a causative agent of all cholera pandemics. Research has shown that anti-lipopolysaccharide (LPS) antibodies could provide protective immunity in cholera cases. In this research, we used N-terminal fragments of the camel's heavy-chain antibodies called VHH or nanobodies and produced a phagemid library. The obtained library was panned against V. cholerae O1 LPS, and four monoclonal nanobodies were isolated. Isolated nanobodies were tested in LPS ELISA and bacterial ELISA. The nanobody with the highest affinity toward the bacterium was used in an in vivo challenge and successfully neutralized the bacterium infection. The isolated nanobody showed high thermostability and proteolytic resistance in characterization tests.  相似文献   
402.
403.
Surfactant that is produced from cheap sources like oil sludge by biological agents such as bacteria can be used in various industrial processes. For example, it can be used in environmental processes such as bioremediation and elimination of environmental pollutants, and acts as synergistic agents and distributor pesticides on waxy leaves in agriculture. In this study, biosurfactant which is produced by Pseudomonas aeruginosa (isolated from petroleum sludge) at the intervals of 24, 48, 72 and 96?h, along with chemical surfactant Tween 80 and the biological control agent, Bacillus thuringiensis, in a pilot project for controlling one important cabbage pest (Pieris brassicae), their synergistic properties were evaluated. Statistical analysis of the results showed that B. thuringiensis in combination with biosurfactant produced at different times and B. thuringiensis in combination with chemical surfactant Tween 80 when compared with control treatments like B. thuringiensis alone and B. thuringiensis plus tween 80 as positive controls and distilled water as negative control have significant differences (p?<?0.05). This research showed that surfactant treatment produced at the intervals of 24 and 48?h in combination with B. thuringiensis has the greatest synergistic effect when compared to chemical surfactant treatment. This study concluded that biosurfactant can be used as a distributor and synergistic agent against plant pests and in addition to this, their biological roles in bioremediation can be used as a viable alternative to non-economical chemical surfactants that annually enter millions of tonnes of harmful chemical substances into the fields and underground water.  相似文献   
404.
Ingestion of botulinum neurotoxin (BoNT) results in botulism, a severe and frequent fatal disease known in the world. Current treatments rely on antitoxins, such as equine antitoxin and human botulism immunoglobulin. In some cases, side effects have been reported, including early anaphylactic shock and late serum sickness. Thus, diagnosis and treatment measure of BoNT are necessary and crucial. In the present study, a single-domain variable heavy-chain (VHH) antibody fragment was obtained from an immune dromedary phage display library against the putative binding domain of botulinum neurotoxin E (BoNT/E), a non-toxic 50-kDa fragment. The characteristics of nanobody VHH include excellent production, superior heat stability and specific binding capacity to soluble antigen without cross-reaction to other relevant or irrelevant antigens. A total of 150 ng/Kg of nanobody entirely neutralized 3LD50 of the BoNT/E in an in vivo challenge of the mice. This phenomenon indicates BoNT/E toxin neutralizing capacity of the produced nanobody. These results also suggest possession of unique properties by the nanobody applicable in diagnostics or therapeutic purposes.  相似文献   
405.
2-Methoxytetrahydropyran (1), -thiopyran (2) and -selenopyran (3) have been chosen as model compounds to investigate the origin of the anomeric effect (AE). The impacts of the hyperconjugation, electrostatic and steric interactions on the conformational preferences of compounds 13 have been analysed by means of complete basis set-4, hybrid-density functional theory (B3LYP/6-311+G**) based methods and natural bond orbital (NBO) interpretation. Both levels of theory showed that the axial conformations of compounds 13 are more stable than their equatorial conformations. The Gibbs free energy difference (G eqG ax) values (i.e. ΔG eq–ax) between the axial and equatorial conformations increase from compound 1 to compound 2 but decrease from compound 2 to compound 3. Based on the NBO results obtained, the AE associated with the electron delocalisation [i.e. Σ(endo-AEeq + exo-AEeq) ? Σ(endo-AEax + exo-AEax)] increase slightly from compound 1 to compound 2 but decrease from compound 2 to compound 3. Similar trend is also observed for the differences between the calculated total steric exchange energy values [i.e. Δ(TSEE)eq–ax]. On the other hand, the calculated differences between the dipole moment values of the axial and equatorial conformations [i.e. Δ(μeq–μax)] decrease from compound 1 to compound 3. These findings led to the proposal that the AE associated with the electron delocalisation (the hyperconjugation effect) is more significant for the explanation of the conformational preferences of compounds 13 than the electrostatic model. The correlations between the AE associated with the electron delocalisation, bond orders, TSEE, ΔG eq–ax, dipole–dipole interactions, structural parameters and conformational behaviours of compounds 13 have been investigated.  相似文献   
406.
407.
Neurochemical Research - Alzheimer’s disease (AD) is associated with neural oxidative stress and inflammation, and it is assumed to affect more women than men with unknown mechanisms....  相似文献   
408.
409.
A density functional theory investigation of adsorption of monomer, dimer and trimer forms of pyrrole on the outer surface of zigzag (7,0) single-walled carbon nanotube (SWCNT) has been reported. Geometries of the complexes were optimized using the M06-2X functional and the 6-31G(d,p) basis set. Moreover, 6-311G(d,p), cc-pVDZ and cc-pVTZ basis sets were used for the adsorption energy calculation and such energies were corrected for the basis set superposition error. Vertical ionization potential and electron affinity of the investigated system were also computed. The interaction of polypyrrole on the SWCNT surface is characterized by the stacking interaction. Adsorption (binding) energy of pyrrole on the SWCNT surface is weak, but such energy increases with the number of monomer units in the pyrrole oligomer. In the SWCNT-pyrrole complexes, the oxidation and reduction processes will take place only at the SWCNT. The influence of larger unit on the electronic properties of the complex has been detailed.  相似文献   
410.
Interest in attractive biological sources with multicriteria applications has been increasing during recent years. This study scrutinized the applications of Dietzia bacteria for future prospects. Apart from such present and well-established applications—as in therapeutic biotreatments for adult paratuberculosis animals, production of carotenoid pigments, and animal feed additives—their uses in biosurfactants and biodemulsifiers production, the pollutants bioremediation, biodegradation of petroleum hydrocarbons and crude oil and also production of extracellular polymeric substances (EPSs) have been exploited. The use of these bacteria as a biotechnological tool may lead to improve the optimization and quality assurance of food ingredients and products, the capability of degradation and remediation of environmental pollutants, and the efficiency of bioconversion systems for energy recovery and bioprocessing of value-added products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号