首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   19篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   7篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   15篇
  2013年   9篇
  2012年   11篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
121.
Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12?days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered.  相似文献   
122.
Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production.  相似文献   
123.
Translation of the open reading frame 2 (ORF-2) of the human respiratory syncytial virus M2 gene initiates at one of the three initiation codons located upstream of the termination codon for the first ORF. Replacement of ORF-2 with the major ORF of the chloramphenicol acetyltransferase reporter gene followed by systematic mutagenesis of the putative initiation codons demonstrated the usage of these codons as the translational initiators for ORF-2 expression both in vitro and in vivo. While the efficiency of translation was maintained when only the first and second AUG codons were preserved in vivo, there was no apparent preference in vitro for any of the three codons when only one was present. Mutagenesis studies showed that the location of the termination codon of ORF-1 protein plays a crucial role in directing translation of ORF-2 from the upstream initiation codons in vivo. This indicates that the second ORF is accessed by the ribosomes that are departing from the first ORF and that these ribosomes reinitiate on AUG codons 5' to the point of translation termination.  相似文献   
124.
Guanine nucleotide exchange factors of the Dbl family regulate the actin cytoskeleton through activation of Rho-like GTPases. At present the Dbl family consists of more than thirty members; many have not been phenotypically or biochemically characterized. Guanine nucleotide exchange factors universally feature a Dbl homology domain followed by a pleckstrin homology domain. Employing data base screening we identified a recently cloned cDNA, KIAA0424, showing substantial sequence homology with Rac activators such as Tiam1, Sos, Vav, and PIX within the catalytic domain. This cDNA appears to be the human homologue of the Ascidian protein Posterior End Mark-2 (PEM-2). We refer to this exchanger as hPEM-2. hPEM-2 encodes a protein of 70 kDa and features an N-terminal src homology 3 domain, followed by tandem Dbl homology and pleckstrin homology domains. The gene is highly expressed in brain and is localized on the human X-chromosome. Employing biochemical activity assays for Rho-like GTPases we found that hPEM-2 specifically activates Cdc42 and not Rac or RhoA. Ectopic expression of hPEM-2 in NIH3T3 fibroblasts revealed a Cdc42 phenotype featuring filopodia formation, followed by cortical actin polymerization and cell rounding. hPEM-2 represents an exchange factor, which may have a role in the regulation of a number of cellular processes through Cdc42.  相似文献   
125.
A series of 7-N-acyllavendamycins with zero, one or two substituents at the C-2', C-3', and C-11' were synthesized through short and efficient methods. Pictet-Spengler condensation of 7-N-acylamino-2-formylquinoline-5,8-diones with tryptamine or tryptophans produced the desired lavendamycins. Screening data on a panel of three ras oncogene-transformed cell lines and the non-transformed parent cell line showed that a significant number of these analogues are potent antitumor agents and appear to be particularly active against K-ras transformed cells. Compared with the corresponding quinolinediones, these novel lavendamycins are much more inhibitory toward the transformed cells indicating that the beta-carboline moiety of the lavendamycin analogues plays an important role in its potency and selective toxicity.  相似文献   
126.
Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.  相似文献   
127.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in several manufactured products. The small size of NPs facilitates their uptake into cells as well as transcytosis across epithelial cells into blood and lymph circulation to reach different sites, such as the central nervous system. Different studies have shown the risks that TiO2 NPs in the neuronal system and other organs present. As membrane-bound layer aggregates or single particles, TiO2 NPs can enter not only cells, but also mitochondria and nuclei. Therefore these particles can interact with cytoplasmic proteins such as microtubules (MTs). MTs are cytoskeletal proteins that are essential in eukaryotic cells for a variety of functions, such as cellular transport, cell motility and mitosis. MTs in neurons are used to transport substances such as neurotransmitters. Single TiO2 NPs in cytoplasm can interact with these proteins and affect their crucial functions in different tissues. In this study, we showed the effects of TiO2 NPs on MT polymerization and structure using ultraviolet spectrophotometer and fluorometry. The fluorescent spectroscopy showed a significant tubulin conformational change in the presence of TiO2 NPs and the ultraviolet spectroscopy results showed that TiO2 NPs affect tubulin polymerization and decrease it. The aim of this study was to find the potential risks that TiO2 NPs pose to human organs and cells.  相似文献   
128.
129.
130.
Abstract

A convenient and efficient procedure for the synthesis of 13C methyl-labeled thymidine by way of lithiation of t-butyldimethylsilyl protected 2′-deoxyuridine is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号