首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   34篇
  国内免费   1篇
  533篇
  2023年   2篇
  2022年   7篇
  2021年   15篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   21篇
  2015年   26篇
  2014年   33篇
  2013年   23篇
  2012年   36篇
  2011年   23篇
  2010年   20篇
  2009年   15篇
  2008年   33篇
  2007年   23篇
  2006年   25篇
  2005年   18篇
  2004年   23篇
  2003年   19篇
  2002年   17篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   12篇
  1989年   13篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   4篇
  1983年   5篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   4篇
  1974年   1篇
  1970年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
81.
Abstract Competition experiments revealed that adenine and guanine were transported by a purine permease in both Candida glabrata 4 and a C. glabrata 4 cytosine permease negative mutant. The C. glabrata 4 cytosine permease negative mutant was isolated using 5-fluorocytosine selection. This mutant no longer transported cytosine, but transported adenine and guanine. A transport system for hypoxanthine was not detected. Hence, in addition to the cytosine permease, a purine permease exists in C. glabrata . This differs from the purine cytosine permeases in Saccharomyces cereuisiae and Candida albicans which transport adenine, cytosine, guanine and hypoxanthine.  相似文献   
82.
83.
84.
85.
Many studies have demonstrated that male aggression is regulated by testosterone. The conversion of testosterone to estradiol by brain aromatase is also known to regulate male aggression in the breeding season. Male song sparrows (Melospiza melodia morphna) are territorial not only in the breeding season, but also in the nonbreeding season, when plasma testosterone and estradiol levels are basal. Castration has no effect on nonbreeding aggression. In contrast, chronic (10 day) aromatase inhibitor (fadrozole) treatment decreases nonbreeding aggression, indicating a role for estrogens. Here, we show that acute (1 day) fadrozole treatment decreases nonbreeding territoriality, suggesting relatively rapid estrogen effects. In spring, fadrozole decreases brain aromatase activity, but acute and chronic fadrozole treatments do not significantly decrease aggression, although trends for some behaviors approach significance. In gonadally intact birds, fadrozole may be less effective at reducing aggression in the spring. This might occur because fadrozole causes a large increase in plasma testosterone in intact breeding males. Alternatively, estradiol may be more important for territoriality in winter than spring. We hypothesize that sex steroids regulate male aggression in spring and winter, but the endocrine mechanisms vary seasonally.  相似文献   
86.
The Lapland longspur (Calcarius lapponicus) is an arctic-breeding songbird that shows rapid behavioral changes during a short breeding season. Changes in plasma testosterone (T) in the spring are correlated with singing but not territorial aggression in males. Also, T treatment increases song but not aggression in this species. In contrast, in temperate-zone breeders, song and aggression are highly correlated, and both increase after T treatment. We asked whether regional or temporal differences in androgen-metabolizing enzymes in the longspur brain explain hormone-behavior patterns in this species. We measured the activities of aromatase, 5alpha-reductase and 5beta-reductase in free-living longspur males. Aromatase and 5alpha-reductase convert T into the active steroids 17beta-estradiol (E(2)) and 5alpha-dihydrotestosterone (5alpha-DHT), respectively. 5beta-Reductase deactivates T via conversion to 5beta-DHT, an inactive steroid. We examined seven brain regions at three stages in the breeding season. Overall, aromatase activity was high in the hypothalamus, hippocampus, and ventromedial telencephalon (containing nucleus taeniae, the avian homologue to the amygdala). 5beta-Reductase activity was high throughout the telencephalon. Activities of all three enzymes changed over time in a region-specific manner. In particular, aromatase activity in the rostral hypothalamus was decreased late in the breeding season, which may explain why T treatment at this time does not increase aggression. Changes in 5beta-reductase do not explain the effects of plasma T on aggressive behavior.  相似文献   
87.
88.
The Lapland longspur (Calcarius lapponicus) is an arctic‐breeding songbird that shows rapid behavioral changes during a short breeding season. Changes in plasma testosterone (T) in the spring are correlated with singing but not territorial aggression in males. Also, T treatment increases song but not aggression in this species. In contrast, in temperate‐zone breeders, song and aggression are highly correlated, and both increase after T treatment. We asked whether regional or temporal differences in androgen‐metabolizing enzymes in the longspur brain explain hormone‐behavior patterns in this species. We measured the activities of aromatase, 5α‐reductase and 5β‐reductase in free‐living longspur males. Aromatase and 5α‐reductase convert T into the active steroids 17β‐estradiol (E2) and 5α‐dihydrotestosterone (5α‐DHT), respectively. 5β‐Reductase deactivates T via conversion to 5β‐DHT, an inactive steroid. We examined seven brain regions at three stages in the breeding season. Overall, aromatase activity was high in the hypothalamus, hippocampus, and ventromedial telencephalon (containing nucleus taeniae, the avian homologue to the amygdala). 5β‐Reductase activity was high throughout the telencephalon. Activities of all three enzymes changed over time in a region‐specific manner. In particular, aromatase activity in the rostral hypothalamus was decreased late in the breeding season, which may explain why T treatment at this time does not increase aggression. Changes in 5β‐reductase do not explain the effects of plasma T on aggressive behavior. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 176–188, 1999  相似文献   
89.
Hyposidra talaca (Walker) (Lepidoptera: Geometridae) is the most harmful pest of northeastern tea hub of India that devastates the tea production by feasting on the tea leaves. Hyposidra talaca nucleopolyhedrovirus (HytaNPV) is a natural enemy of the aforesaid pest, as it poses great obstruction in the multiplication of the pest by causing significant larval mortality. The study was undertaken to screen the virus activity against first to fifth instar H. talaca larvae. Early instar stages are found more susceptible than the late stages as they tend to reflect highest LC50 value for fifth instar as 4.3 × 107 POB/ml and lowest LC50 value for first instar as 7 × 104 POB/ml within seven days of inoculation. LT50 values vary between 2.47 and 8.45 days for neonates to fifth instar. The high record of virulence of HytaNPV indicates its bright prospect as a useful microbial biopesticide.  相似文献   
90.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号