首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
  61篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
21.

Objective

To study the performance of a developed job exposure matrix (JEM) for the assessment of psychosocial factors at work in terms of accuracy, possible misclassification bias and predictive ability to detect known associations with depression and low back pain (LBP).

Materials and Methods

We utilized two large population surveys (the Health 2000 Study and the Finnish Work and Health Surveys), one to construct the JEM and another to test matrix performance. In the first study, information on job demands, job control, monotonous work and social support at work was collected via face-to-face interviews. Job strain was operationalized based on job demands and job control using quadrant approach. In the second study, the sensitivity and specificity were estimated applying a Bayesian approach. The magnitude of misclassification error was examined by calculating the biased odds ratios as a function of the sensitivity and specificity of the JEM and fixed true prevalence and odds ratios. Finally, we adjusted for misclassification error the observed associations between JEM measures and selected health outcomes.

Results

The matrix showed a good accuracy for job control and job strain, while its performance for other exposures was relatively low. Without correction for exposure misclassification, the JEM was able to detect the association between job strain and depression in men and between monotonous work and LBP in both genders.

Conclusions

Our results suggest that JEM more accurately identifies occupations with low control and high strain than those with high demands or low social support. Overall, the present JEM is a useful source of job-level psychosocial exposures in epidemiological studies lacking individual-level exposure information. Furthermore, we showed the applicability of a Bayesian approach in the evaluation of the performance of the JEM in a situation where, in practice, no gold standard of exposure assessment exists.  相似文献   
22.
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities.Abbreviations: DEI, diffraction-enhanced imagingDiffraction-enhanced imaging (DEI) is a biomedical imaging technique that, compared with conventional radiography, generates very detailed images with more edge contrast but deposits a lower radiation dose to the object. DEI generates enhanced contrast both from absorption, the process involved in conventional radiography, and from of X-ray refraction, a process that harnesses photons that otherwise typically are imperceptibly diffracted.4 The DEI technique collects information from X-rays that are refracted as they pass through tissues that have different refractive indices as it almost completely removes diffracted X-rays. In comparison, conventional radiography produces images from X-rays that are attenuated by the tissues through which they pass, but X-rays that are refracted within those same tissues confound, rather than clarify, image contrast. The creation of contrast from the refraction of X-rays, rather than exclusively from absorption, yields images that display more detail with clearer distinction between tissue interfaces. Refraction-based imaging can reveal tiny structures that are transparent to X-ray attenuation but have sufficient variation in density to produce refraction contrast. Furthermore, refraction-based imaging decreases the required radiation dose.21To obviate the superimposing effects in a 2-dimensional DEI refraction image, we considered that combining CT with DEI would yield images with even greater clarity. CT allows a 3D representation of the sample, such that contrast from features at different depths are no longer superimposed on one another but can be separated and viewed as independent structures. Although this advantage is valuable in traditional absorption imaging, the additional features that provide contrast in a refraction-based image enhance the value of CT. Combining DEI technology, which is capable of imaging soft-tissue detail, with CT, which allows segregation of the contrast images at different depths, overcomes limitations of conventional X-ray imaging, namely lack of distinction of soft tissues and 2-dimensionality. As we report here, DEI combined with CT and a synchrotron-generated X-ray source yields 3D images of growing joint tissues at a resolution on the order of micrometers, which is much higher than can be generated using conventional imaging techniques.A synchrotron radiation source was required for the development of DEI because a synchrotron currently is the only source capable of providing an intensely brilliant light (millions of times brighter than sunlight and conventional X-ray sources), is highly collimated (light rays in the beam remain parallel with negligible dispersion over distance), can be made to be monochromatic (having a single wavelength), and can be tuned precisely to an array of energy ranges. The Canadian Light Source (www.lightsource.ca), which began operations in 2005, is one of only 47 synchrotron facilities worldwide and the only such facility in Canada. Although nonsynchrotron sources of X-rays for DEI–CT are conceivable,16,18 such technology requires considerable image-acquisition time. Regardless, the quality of images generated by using synchrotron technology likely would remain the standard with which any new nonsynchrotron DEI–CT technological innovations would be compared.14Despite refinements in medical imaging, conventional radiography, CT scanning, and MRI still are insufficient to discern fine details, particularly in growing joints in which soft tissues (including cartilage) predominate and change with physiologic growth. The impetus for the current research was to develop an imaging technique that better demonstrated normal joint characteristics during growth and, in the future, could be applied to pathologic joints for experimental research and eventually clinical applications. In particular, we were motivated by a need to more effectively and reliably image growing joints affected by arthritis, a disease associated with alterations of bone and cartilage growth, tissue morphology and vascularity. Childhood arthritis research likely will benefit from having an improved imaging technique to aid in early diagnosis, monitor disease progression, and assess responses to therapies. The long-term outcomes of childhood arthritis are improved with early diagnosis and prompt and effective response to treatment interventions. Clinical and laboratory-based indicators of inflammation are not always adequate to detect and monitor subclinical intraarticular inflammation which, as with overt disease, can lead to progressive joint damage. Imaging can augment clinical and laboratory assessment of arthritis activity, but even the most sensitive currently available modalities are unable to detect all joint pathology.In juvenile arthritis, joint-imaging outcomes are difficult to evaluate because variations associated with normal growth cannot always be easily discerned from variations induced by the disease. Conventional radiography tends to detect advanced joint damage that has affected bone, but cartilage can be assessed only indirectly, and soft tissue abnormalities cannot be fully evaluated. Consequently, conventional radiography has insufficient sensitivity and specificity to be considered useful for diagnosing or monitoring children with inflammatory joint disease.6,20 MRI, which evaluates both soft tissues and osteochondral structures, can be used to detect cartilage loss, bone erosions, and synovial hypertrophy in children and adolescents, and contrast-enhanced MRI detects active synovitis.1,10 However, standardized approaches to acquire and interpret MRI data are not established for children in general and, in particular, for children with arthritis;12,15 it is not always clear, for example, if observed thinning of cartilage is physiologic or pathologic. Furthermore, although MRI is more sensitive than conventional radiography, MRI too has limited precision in detecting fine structures and pathologic changes; a clinical MRI has less than 50% sensitivity in detecting cartilage damage that subsequently is seen arthroscopically.8,13CT offers another option for joint visualization, given that it provides high-resolution, 3D images of bone from any angle. Despite its high spatial resolution, however, CT cannot match MRI''s soft-tissue contrast resolution, because CT provides negligible variability of attenuation coefficients of soft tissues so attenuation is nearly the same for cartilage, muscles, and ligaments. Furthermore, CT''s value is offset by the necessity for radiation exposure, a particular concern in the pediatric population. Therefore, for joint research and clinical applications, each of the conventional imaging techniques currently available has limitations. A safe, higher resolution imaging system that generates good contrast for all joint structures is required.Because the DEI technique initially was developed by using a synchrotron light source, we similarly used synchrotron technology in the current experiments. In contrast to conventional X-ray tubes, a synchrotron generates light by using radiofrequency waves and electromagnets to energize and accelerate electrons, thus producing brilliant, highly focused light from the entire wavelength spectrum, including X-rays. For the development and evaluation of DEI–CT imaging of joints, we chose to use healthy commercial piglet stifle joints because porcine stifle joints are anatomically similar to human knees.5 In addition, pigs grow quickly, reaching skeletal maturity at the distal femur and proximal tibia in 20 mo,19 thus allowing for the use of the pig as a model to study growth patterns in normal and disease states in a relatively short time period. The current study aimed to develop and test a new technology for imaging growing joints by using DEI combined with CT and a synchrotron radiation source. This report is the first to document the application of DEI–CT for imaging intact, growing joints.  相似文献   
23.
Nisin-producing Lactococcus lactis strains show a high degree of resistance to the action of nisin, which is based upon expression of the self-protection (immunity) genes nisI, nisF, nisE, and nisG. Different combinations of nisin immunity genes were integrated into the chromosome of a nisin-sensitive Bacillus subtilis host strain under the control of an inducible promoter. For the recipient strain, the highest level of acquired nisin tolerance was achieved after coordinated expression of all four nisin immunity genes. But either the lipoprotein NisI or the ABC transporter-homologous system NisFEG, respectively, were also able to protect the Bacillus host cells. The acquired immunity was specific to nisin and provided no tolerance to subtilin, a closely related lantibiotic. Quantitative in vivo peptide release assays demonstrated that NisFEG diminished the quantity of cell-associated nisin, providing evidence that one role of NisFEG is to transport nisin from the membrane into the extracellular space. NisI solubilized from B. subtilis membrane vesicles and recombinant hexahistidine-tagged NisI from Escherichia coli interacted specifically with nisin and not with subtilin. This suggests a function of NisI as a nisin-intercepting protein.  相似文献   
24.
The main properties of a monofunctional riboflavin kinase from B. subtilis have been studied for the first time; the enzyme is responsible for a key reaction in flavin biosynthesis—the ATP-dependent phosphorylation of riboflavin with production of flavin mononucleotide. The active form of the enzyme is a monomer with molecular weight of about 26 kD with a strict specificity for reduced riboflavin. To display its maximum activity, the enzyme needs ATP and Mg2+. During the phosphorylation of riboflavin, Mg2+ could be partially replaced by ions of other bivalent metals, the efficiencies of which decreased in the series Mg2+ > Mn2+ > Zn2+, whereas Co2+ and Ca2+ had inhibiting effects. The flavokinase activity was maximal at pH 8.5 and 52°C. ATP could be partially replaced by other triphosphates, their donor activity decreasing in the series: ATP > dATP > CTP > UTP. The Michaelis constants for riboflavin and ATP were 0.15 and 112 M, respectively. As compared to riboflavin, a tenfold excess of its analog 7,8-dimethyl-10-(O-methylacetoxime)-isoalloxazine decreased the enzyme activity by 30%. Other analogs of riboflavin failed to markedly affect the enzyme activity.  相似文献   
25.
26.
The mechanism of binding of lipopolysaccharide (LPS) from Yersinia pseudotuberculosis to low-molecular-weight chitosan was investigated using sedimentation analysis, centrifugation in glycerol and percoll density gradients, and isopicnic centrifugation in cesium chloride. The LPS interaction with chitosan was shown to be a multistage process that depended on time and reaction temperature. A stable LPS-chitosan complex could be formed only after preliminary incubation of the initial components at an elevated temperature (37 degrees C). This temperature caused the LPS dissociation and promoted its binding to chitosan. The LPS binding to chitosan results in further dissociation of the endotoxin and formation of the complex with a molecular weight that is tens of times less than the initial molecular weight of LPS. The obtained complex remained stable in solutions of high ionic strength.  相似文献   
27.
Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.  相似文献   
28.
Two monoclonal antibodies have been produced against chick type V collagen and shown to be highly specific for separate, conformational dependent determinants within this molecule. When used for immunocytochemical tissue localization, these antibodies show that a major site for the in situ deposition of type V is within the extracellular matrices of many dense connective tissues. In these, however, it is largely in a form unavailable to the antibodies, thus requiring a specific “unmasking” treatment to obtain successful immunocytochemical staining. The specificity of these two IgG antibodies was determined by inhibition ELISA, in which only type V and no other known collagen shows inhibition. In ELISA, mixtures of the two antibodies give an additive binding reaction to the collagen, suggesting that each is against a different antigenic determinant. That both antigenic determinants are conformational dependent, being either in, or closely associated with, the collagen helix is demonstrated by the loss of antibody binding to molecules that have been thermally denatured. The temperature at which this occurs, as assayed by inhibition ELISA, is very similar to that at which the collagen helix melts, as determined by optical rotation. This gives strong additional evidence that the antibodies are directed against the collagen. The antibodies were used for indirect immunofluorescence analyses of cryostat sections of corneas and other organs from 17 to 18-day-old chick embryos. Of all tissues examined only Bowman’s membrane gave a strong staining reaction with cryostat sections of unfixed material. Staining in other areas of the cornea and in other tissues was very light or nonexistent. When, however, sections were pretreated with pepsin dissolved in dilute HAc or, surprisingly, with the dilute HAc itself dramatic new staining by the antibodies was observed in most tissues examined. The staining, which was specific for the anti-type V collagen antibodies, was largely confined to extracellular matrices of dense connective tissues. Experiments using protease inhibitors suggested that the “unmasking” did not involve proteolysis. We do not yet know the mechanism of this unmasking; however, one possibility is that the dilute acid causes swelling or conformational changes in a type-V collagen-containing supramolecular structure. Further studies should allow us to determine whether this is the case.  相似文献   
29.
Noncoding RNAs have recently been identified as essential components of the nuclear suborganelles called paraspeckles. This finding will facilitate our understanding of the molecular dynamics and physiological role of these enigmatic macromolecular structures.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号