首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   1篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   10篇
  2009年   4篇
  2008年   13篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1991年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
31.
The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives — high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) — entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS.  相似文献   
32.
The aim of this work is complex estimation of the nitric oxide action on whole blood of healthy people. We tested the reaction of whole human blood (n = 14) to the processing of it with cold NO-containing plasma. We performed direct sparging of blood samples by gaseous flow with NO in a special plant. Cold NO-containing plasma was generated by apparatus “Plazon” (Russia). We tested lactate dehydrogenase activity in direct and reverse reactions, aldehyde dehydrogenase and superoxide dismutase activity, total protein and lactate level, acid-base balance and the partial pressure of gases in blood. For integral assessment of energy metabolism changes a number of derivative parameters (coefficients of energy reaction balance and substrate provision) were used. Our experiments showed that the processing of whole human blood with NO-containing gas flow (NO concentration — 800 ppm) results in significant changes of its physical and chemical parameters. This exposure leads to inhibition of erythrocytes energy metabolism, decreasing plasma antioxidant reserves, developing moderate ionic disorders and acid-base disbalance in blood samples in vitro.  相似文献   
33.
A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to the magnetic field, a closed-form analytical result is derived. With the obtained analytical expression the RDCs are readily accessible for any locus along the chain, for chains of differing length, and for varying bicelle concentrations. The two general features predicted by the model are (i) RDCs in the center segments of a polypeptide chain are larger than RDCs in the end segments, resulting in a bell-shaped sequential distribution of RDCs, and (ii) couplings are larger for shorter chains than for longer chains at a given bicelle concentration. Experimental data available from the literature confirm the first prediction of the model, providing a tool for recognizing fully unfolded polypeptide chains. With less certainty experimental data appear to support the second prediction as well. However, more systematic experimental studies are needed in order to validate or disprove the predictions of the model. The presented framework is an important step towards a solid theoretical foundation for the analysis of experimentally measured RDCs in unfolded proteins in the case of alignment media such as polyacrylamide gels and neutral bicelle systems which align biomacromolecules by a steric mechanism. Various improvements and generalizations are possible within the suggested approach.  相似文献   
34.
The purpose of the study was to compare the expression of two Yersinia pseudotuberculosis proteins, wild-type porin OmpY and the mutant porin OmpY designated as OmpY-Q having the uncharged amino acid residue Gln instead of positively charged Arg at the penultimate position in the same heterologous host. According to the literature, a similar substitution (Lys to Gln) of the penultimate amino acid residue in Neisseria meningitidis porin PorA drastically improved the assembly of the protein in the E. coli outer membrane in vivo. Site-directed mutagenesis was used to replace Arg by Gln (R338Q) in OmpY, and the conditions for optimal expression and maturation of OmpY-Q were selected. It was found that the growth rates of E. coli strains producing OmpY and OmpY-Q and the expression levels of the porins were approximately equal. Comparative analysis of recombinant OmpY and OmpY-Q did not show significant differences in structure, antigenic, and functional properties of the porins, or any noticeable effect of the R338Q substitution in OmpY on its assembly in the E. coli outer membrane in vivo. The probable causes of discrepancies between our results and the previous data on porin PorA are discussed considering the known mechanisms of biogenesis of porins at the periplasmic stage.  相似文献   
35.
The level of heterogeneity and genetic variability of cells in a suspension of Arabidopsis thaliana cultured in vitro for more than seven years was studied. The considerable heterogeneity of the suspension in cell size was shown. As revealed by nuclear DNA cytophotometry, the suspension culture was mixoploid and the amount of DNA in the cells varied from 4 to 16 C. However, PCR with 6 RAPD- and 4 ISSR-primers and their intragroup combinations showed the lowest degree of variability of DNA markers. The genetic distances of clones obtained from a suspension culture of the parent plant were only 1.5%. Differences between the clones were identified with only one pair of 31 primer combinations tested, indicating low level of genetic heterogeneity of the suspension. The results showed that variations in the amount of DNA in the suspension culture cells are not accompanied by significant changes in the DNA sequence.  相似文献   
36.
Gram-negative bacteria are enveloped by two membranes, the inner (cytoplasmic) (CM) and the outer (OM). The majority of integral outer membrane proteins are arranged in β-barrels of cylindrical shape composed of amphipathic antiparallel β-strands. In bacteria, β-barrel proteins function as water-filled pores, active transporters, enzymes, receptors, and structural proteins. Proteins of bacterial OM are synthesized in the cytoplasm as unfolded polypeptides with an N-terminal sequence that marks them for transport across the CM. Precursors of membrane proteins move through the aqueous medium of the cytosol and periplasm under the protection of chaperones (SecB, Skp, SurA, and DegP), then cross the CM via the Sec system composed of a polypeptide-conducting channel (SecYEG) and ATPase (SecA), the latter providing the energy for the translocation of the pre-protein. Pre-protein folding and incorporation in the OM require the participation of the Bam-complex, probably without the use of energy. This review summarizes current data on the biogenesis of the β-barrel proteins of bacterial OM. Data on the structure of the proteins included in the multicomponent system for delivery of the OM proteins to their destination in the cell and on their complexes with partners, including pre-proteins, are pre-sented. Molecular models constructed on the basis of structural, genetic, and biochemical studies that describe the mechanisms of β-barrel protein assembly by this molecular transport machinery are also considered.  相似文献   
37.
Multichannel recording of EEG in 11 subjects, who were three times subjected to the emotional Stroop task (in the presence of words with negative emotional loading, neutral words, and inhibitory verbal stimuli), demonstrated that the spectral power of the high-frequency subcomponent of the alpha-rhythm in the left hemisphere increased sequentially under these conditions. Modifications of EEG, in general, were indicative of noticeable transformation of informational flows related to the learning effect and decrease of the cognitive “pressure” due to habituation to the effects of emotionally neutral and inhibitory verbal stimuli. Data related to the EEG pattern agree with the results of measurements of a behavioral index (decrease in the time of sensorimotor reaction).  相似文献   
38.
Catalytic oxidative modification of a single-stranded DNA with hydrogen peroxide and molecular oxygen in the presence of a conjugate containing an oligonucleotide complementary to the DNA fragment and tetra-4-carboxyphthalocyanine Fe(II) was studied. The conjugate examined was found to be active in the reaction of oxidative DNA cleavage in the presence of hydrogen peroxide, like the earlier studied oligonucleotide conjugates containing metallocomplexes tetra-4-carboxyphthalocyanine Co(II) and 2,4-di-[2-(2-hydroxyethyl)]deuteroporphyrin IX Fe(III) generating active oxygen forms. The new conjugate was more active in the case of oxidation with molecular oxygen. Kinetic features and optimal regimes of DNA oxidation with hydrogen peroxide were found.  相似文献   
39.
Recombinant porin OmpF (an integral protein of bacterial outer membrane) from Yersinia pseudotuberculosis was synthesized in Escherichia coli cells as inclusion bodies. By combining the methods of anion-exchange and gel filtration chromatographies, recombinant OmpF (rOmpF) was isolated as an individual protein in its denatured state, and its characteristic properties (molecular mass, N-terminal amino acid sequence, and hydrodynamic radius of the protein in 8M urea solution) were determined. According to the data of gel filtration, dynamic light scattering, optical spectroscopy, and binding of the hydrophobic fluorescent probe 8-anilino-1-naphthalenesulfonic acid, the rOmpF is fully unfolded in 8 M urea and exists in random coil conformation. In aqueous solutions, rOmpF undergoes conformational changes, reversible self-association, and aggregation. When transferred from 8M urea into water, PBS (containing 0.15 M NaCl, pH 7.4), or buffer containing 0.8 M urea (pH 8.0), fully unfolded rOmpF forms relatively compact monomeric intermediates prone to self-association with formation of multimers. The oligomeric intermediates have high content of native protein-like secondary structure and pronounced tertiary structure. In acidic media (pH 5.0, close to the protein isoelectric point), rOmpF undergoes rapid irreversible aggregation. Therefore, we found that medium composition significantly affects both porin folding and processes of its self-association and aggregation.  相似文献   
40.
We investigated the genetic heterogeneity of two A. thaliana callus lines, which had been cultured in vitro, respectively, for 6 months and 8 years under standard conditions and after exposure to abiotic stressors (high temperature, anoxia, and toxic copper ions). Under standard culture conditions, the level of genetic diversity identified by AFLP was 1.2% for the six-month-old callus and 5% for the older cultivated one. In stress conditions, we observed a decrease in the level of genetic diversity of cells in both of the lines analyzed. There was no conclusive evidence of the induction of changes in the DNA nucleotide sequence under the influence of unfavorable conditions. The effect of stressors was manifested primarily at the level of cell populations and was expressed as a selection of cells with certain genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号