首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1758篇
  免费   185篇
  国内免费   1篇
  1944篇
  2022年   21篇
  2021年   33篇
  2018年   24篇
  2017年   27篇
  2016年   42篇
  2015年   73篇
  2014年   47篇
  2013年   61篇
  2012年   79篇
  2011年   104篇
  2010年   52篇
  2009年   53篇
  2008年   79篇
  2007年   63篇
  2006年   59篇
  2005年   52篇
  2004年   52篇
  2003年   54篇
  2002年   51篇
  2001年   39篇
  2000年   34篇
  1999年   18篇
  1998年   19篇
  1993年   20篇
  1992年   28篇
  1991年   45篇
  1990年   34篇
  1989年   43篇
  1988年   21篇
  1987年   31篇
  1986年   22篇
  1985年   21篇
  1984年   25篇
  1983年   20篇
  1982年   15篇
  1981年   21篇
  1980年   25篇
  1979年   29篇
  1978年   33篇
  1977年   22篇
  1976年   27篇
  1975年   15篇
  1974年   17篇
  1973年   20篇
  1972年   21篇
  1971年   25篇
  1970年   14篇
  1968年   19篇
  1967年   16篇
  1966年   23篇
排序方式: 共有1944条查询结果,搜索用时 15 毫秒
101.
102.
Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high-risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in 23 older, obese men and women (aged 66 +/- 1 yr, body mass index 33.2 +/- 1.4 kg/m(2)) with impaired glucose tolerance. All volunteers undertook 12 wk of aerobic exercise training [5 days/wk for 60 min at 75% maximal oxygen consumption (Vo(2max))] with either normal caloric intake (eucaloric group, 1,901 +/- 277 kcal/day, n = 12) or a reduced-calorie diet (hypocaloric group, 1,307 +/- 70 kcal/day, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (Vo(2max)), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin, and basal fat oxidation were greater in the hypocaloric group. Following the intervention, there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = -0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007) but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved but that such a trend may rely on reducing caloric intake in addition to exercise training.  相似文献   
103.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   
104.
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the 'glycine' site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.  相似文献   
105.
Summary The synthesis of virus-specific macromolecules was studied in the reconstituted system containing inner membrane-matrix fraction from rat liver mitochondria and infectious RNA of Venezuelian equine encephalomyelitis (VEE) virus. In a series of preliminary experiments it was shown that isolated submitochondrial fraction was completely free of interfering cytoplasmic contaminations and particularly, of cytoplasmic 80S ribosomes. VEE RNA when added to submitochondrial system caused significant stimulation of RNA and protein synthesis. These processes were resistant to actinomycin D which inhibited profoundly the synthesis of proper mitochondrial macromolecules. The stimulating effect of VEE RNA in experiments with submitochondrial system was about three times higher than that with intact mitochondria. The stimulation of14C-amino acid incorporation increased as a function of incubation time; a certain lag-period being observed. The newly formed virus-specific RNA's and ribonucleoproteins were identified with the aid of sedimentation analysis. In particular, radioactive RNA's with sedimentation coefficients 40S and 26-18S were isolated from the incubated system. These RNA's are similar respectively to VEE genome RNA and doublestranded VEE replicative RNA. In double labelling experiments with3H-uridine and14Camino acids it was shown that VEE RNA induced synthesis of ribonucleoproteins containing newly formed RNA and protein. These RNP possessed sedimentation coefficients 60-80S, 140S and 300S in sucrose gradient and buoyant densities 1.32 and 1.50 g/cm3 in cesium chloride gradients. These properties of ribonucleoproteins synthesized de novo in submitochondrial system are close to those of RNP intermediates of VEE virus reproduction in the infected cells. We concluded that viral RNA could program virus-specific synthesis in the submitochondrial system under conditions that eliminated the contribution of cytoplasmic ribosomes.  相似文献   
106.
107.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   
108.
Development of the bioeconomy is driven by our ability to access the energy-rich carbon trapped in recalcitrant plant materials. Current strategies to release this carbon rely on expensive enzyme cocktails and physicochemical pretreatment, producing inhibitory compounds that hinder subsequent microbial bioproduction. Anaerobic fungi are an appealing solution as they hydrolyze crude, untreated biomass at ambient conditions into sugars that can be converted into value-added products by partner organisms. However, some carbon is lost to anaerobic fungal fermentation products. To improve efficiency and recapture this lost carbon, we built a two-stage bioprocessing system pairing the anaerobic fungus Piromyces indianae with the yeast Kluyveromyces marxianus, which grows on a wide range of sugars and fermentation products. In doing so we produce fine and commodity chemicals directly from untreated lignocellulose. P. indianae efficiently hydrolyzed substrates such as corn stover and poplar to generate sugars, fermentation acids, and ethanol, which K. marxianus consumed while producing 2.4 g/L ethyl acetate. An engineered strain of K. marxianus was also able to produce 550 mg/L 2-phenylethanol and 150 mg/L isoamyl alcohol from P. indianae hydrolyzed lignocellulosic biomass. Despite the use of crude untreated plant material, production yields were comparable to optimized rich yeast media due to the use of all available carbon including organic acids, which formed up to 97% of free carbon in the fungal hydrolysate. This work demonstrates that anaerobic fungal pretreatment of lignocellulose can sustain the production of fine chemicals at high efficiency by partnering organisms with broad substrate versatility.  相似文献   
109.
Predators of apple and pear pests in northern and central Europe and their use as biological control agents are reviewed. Many natural enemy species are specialized feeders and are able to respond to the population dynamics of particular pest species. The most oustandingly successful example of this is the use of phytoseiid mites, particularly Typhlodromus pyri , against phytophagous pest mites in apple. This mite management strategy is now widespread throughout European apple growing regions. Another example is the use of Anthocoris nemoralis against pear psyllids, Cacopsylla pyricola and C. pyri . Several groups of naturally occurring polyphagous predators, such as chrysopids, coccinellids, syrphids and spiders, also prey on a number of pest species in orchards, contributing generally to the reduction in pest populations. However, they are unlikely alone to prevent pest damage fully and reliably. In seeking biological control opportunities for a particular pest, these polyphagous natural enemies are unlikely to be a high priority. An exception, due to its abundance in orchards, is the common earwig, Forficula auricularia , although this predator may also cause some fruit injury. Another option to consider when reviewing possibilities for biological control in orchards is the introduction of biological control agents. The success rate of this approach, using arthropod predators to control pests of field crops, has been generally poor. Furthermore, mass production methods for predators are likely to be difficult and very costly. The biological supplies industry is constantly seeking culture techniques, largely for arthropod biological control agents of pests of protected crops. It is possible that some future advance may be relevant to orchards, though currently available predators do not appear promising. A careful economic appraisal of the feasibility of use of any potential biological control agent would be prudent before embarking on research.  相似文献   
110.
The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号