首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   185篇
  国内免费   1篇
  2022年   22篇
  2021年   34篇
  2020年   16篇
  2018年   24篇
  2017年   30篇
  2016年   43篇
  2015年   74篇
  2014年   53篇
  2013年   64篇
  2012年   79篇
  2011年   105篇
  2010年   52篇
  2009年   53篇
  2008年   81篇
  2007年   65篇
  2006年   59篇
  2005年   52篇
  2004年   53篇
  2003年   56篇
  2002年   52篇
  2001年   39篇
  2000年   35篇
  1999年   19篇
  1998年   19篇
  1993年   19篇
  1992年   27篇
  1991年   46篇
  1990年   34篇
  1989年   43篇
  1988年   21篇
  1987年   31篇
  1986年   22篇
  1985年   21篇
  1984年   25篇
  1983年   19篇
  1982年   15篇
  1981年   21篇
  1980年   25篇
  1979年   28篇
  1978年   33篇
  1977年   22篇
  1976年   27篇
  1975年   15篇
  1974年   17篇
  1973年   20篇
  1972年   21篇
  1971年   25篇
  1968年   19篇
  1967年   16篇
  1966年   23篇
排序方式: 共有1972条查询结果,搜索用时 821 毫秒
221.
Although the application of major biomedical advances has yielded spectacular results for individual health, there has been little improvement in the health of whole populations. There is a "back to the future" irony in the fact that at the inception of the 21st century, the eruption and spread of a multitude of "old" and "new" infectious diseases has become the most serious global threat to the health of humankind. At this historical juncture, the United States is the country with the most potential for favorably influencing global health and health care. Although there are historical, cultural, economic, and political factors that impede the United States from rising to this challenge, there is both a moral imperative and a rational long-term self-interest basis for the U.S. medical profession and government to exercise leadership in facing the health challenges of tragic and genocidal proportions that threaten everyone in an increasingly interdependent world.  相似文献   
222.
The anaphase-promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators. Cdh1p is an APC coactivator that directly binds APC substrates. A genetic screen in budding yeast identified residues within Cdh1p critical for its function. Cdh1p proteins containing mutations within the "C box" or the "IR" motif could bind substrate, but not the APC, whereas mutants that only bound the APC were not identified, suggesting an ordered assembly of the ternary APC-Cdh1p-substrate complex. Supporting this hypothesis, we found that substrate binding to wild-type Cdh1p enhanced its association with the APC in yeast cells. We used peptide competition assays to demonstrate that Cdh1p interacts directly with the D box and the KEN box, two motifs within APC substrates known to be required for APC-mediated degradation. Moreover, an intact D box domain within a substrate was required to stimulate the association between the Cdh1p-substrate complex and the APC.  相似文献   
223.
There are striking differences in the behavioral response to social defeat between male and female Syrian hamsters. Whereas males exhibit a prolonged behavioral response to defeat (i.e., conditioned defeat), many females remain aggressive or show only a transient submissive response following defeat. The current study tested the hypothesis that sex steroids underlie this differential behavioral responsivity to social defeat. Female hamsters were ovariectomized and implanted with Silastic capsules containing estradiol (E(2)), testosterone (T), progesterone (P), dihydrotestosterone (DHT), or a blank capsule (no hormone replacement). After a 3-week recovery period, each subject was placed inside the home cage of a larger, more aggressive female for four 5-min defeat trials. The following day, each animal was tested for conditioned defeat by testing it in its own home cage in the presence of a smaller, non-aggressive intruder. Submissive, aggressive, social, and nonsocial behaviors were subsequently scored. Hamsters receiving E(2) or T displayed significantly lower levels of submissive behavior than did animals receiving P, DHT, or no hormone replacement. There were no significant differences in aggressive behavior among groups. These data suggest that gonadal hormones can influence submissive behavior in female hamsters. Collectively, these results suggest that the sex differences observed in conditioned defeat may, in part, be explained by sex differences in circulating gonadal hormones.  相似文献   
224.
Despite improved prophylaxis and treatment, GvHD remains a major limitation to optimal allogeneic stem cell transplantation. Ex vivo selective depletion (SD) is a strategy to prevent GvHD, in which host-reactive donor lymphocytes are selectively eliminated from a PBSC allograft while useful donor immune function is preserved. The elimination of alloreactive and thereby GvHD-mediating T cells has been shown to be feasible in both pre-clinical and more recently clinical studies. However, SD techniques and the translational research needed for clinical application are still under development. Here we summarize and discuss the following aspects of the SD approach: selection of an appropriate allogeneic stimulator; the responder population; the alloresponse; methods for removal of alloreacting T cells; product testing; clinical considerations. Our review highlights the diversity of possible approaches and the need to develop different techniques for specific clinical applications.  相似文献   
225.
226.
227.
Glycogen synthase kinase (GSK) 3beta is a negative regulator of stress-induced cardiomyocyte hypertrophy. It is not clear, however, if GSK-3beta plays any role in regulating normal cardiac growth and cardiac function. Herein we report that a transgenic mouse expressing wild type GSK-3beta in the heart has a dramatic impairment of normal post-natal cardiomyocyte growth as well as markedly abnormal cardiac contractile function. The most striking phenotype, however, is grossly impaired diastolic relaxation, which leads to increased filling pressures of the left ventricle and massive atrial enlargement. This is due to profoundly abnormal calcium handling, leading to an inability to normalize cytosolic [Ca2+] in diastole. The alterations in calcium handling are due at least in part to direct down-regulation of the sarcoplasmic reticulum calcium ATPase (SERCA2a) by GSK-3beta, acting at the level of the SERCA2 promoter. These studies identify GSK-3beta as a regulator of normal growth of the heart and are the first of which we are aware, to demonstrate regulation of expression of SERCA2a, a critical determinant of diastolic function, by a cytosolic signaling pathway, the activity of which is dynamically modulated. De-regulation of GSK-3beta leads to severe systolic and diastolic dysfunction and progressive heart failure. Because down-regulation of SERCA2a plays a central role in the diastolic and systolic dysfunction of patients with heart failure, these findings have potential implications for the therapy of this disorder.  相似文献   
228.
Hemopoietic cells, apparently committed to one lineage, can be reprogrammed to display the phenotype of another lineage. The J2E erythroleukemic cell line has on rare occasions developed the features of monocytic cells. Subtractive hybridization was used in an attempt to identify genes that were up-regulated during this erythroid to myeloid transition. We report here on the isolation of hemopoietic lineage switch 5 (Hls5), a gene expressed by the monocytoid variant cells, but not the parental J2E cells. Hls5 is a novel member of the RBCC (Ring finger, B box, coiled-coil) family of genes, which includes Pml, Herf1, Tif-1alpha, and Rfp. Hls5 was expressed in a wide range of adult tissues; however, at different stages during embryogenesis, Hls5 was detected in the branchial arches, spinal cord, dorsal root ganglia, limb buds, and brain. The protein was present in cytoplasmic granules and punctate nuclear bodies. Isolation of the human cDNA and genomic DNA revealed that the gene was located on chromosome 8p21, a region implicated in numerous leukemias and solid tumors. Enforced expression of Hls5 in HeLa cells inhibited cell growth, clonogenicity, and tumorigenicity. It is conceivable that HLS5 is one of the tumor suppressor genes thought to reside at the 8p21 locus.  相似文献   
229.
We have previously shown that a subpopulation of naturally occurring human IgGs were cross-reactive against conformational epitopes on pathologic aggregates of Aβ, a peptide that forms amyloid fibrils in the brains of patients with Alzheimer disease, inhibited amyloid fibril growth, and dissociated amyloid in vivo. Here, we describe similar anti-amyloidogenic activity that is a general property of free human Ig γ heavy chains. A γ1 heavy chain, F1, had nanomolar binding to an amyloid fibril-related conformational epitope on synthetic oligomers and fibrils as well as on amyloid-laden tissue sections. F1 did not bind to native Aβ monomers, further indicating the conformational nature of its binding site. The inherent anti-amyloidogenic activity of Ig γ heavy chains was demonstrated by nanomolar amyloid fibril and oligomer binding by polyclonal and monoclonal human heavy chains that were isolated from inert or weakly reactive antibodies. Most importantly, the F1 heavy chain prevented in vitro fibril growth and reduced in vivo soluble Aβ oligomer-induced impairment of rodent hippocampal long term potentiation, a cellular mechanism of learning and memory. These findings demonstrate that free human Ig γ heavy chains comprise a novel class of molecules for developing potential therapeutics for Alzheimer disease and other amyloid disorders. Moreover, establishing the molecular basis for heavy chain-amyloidogenic conformer interactions should advance understanding on the types of interactions that these pathologic assemblies have with biological molecules.  相似文献   
230.
In prion diseases, the infectious isoform of the prion protein (PrPSc) may subvert a normal, physiological activity of the cellular isoform (PrPC). A deletion mutant of the prion protein (Δ105–125) that produces a neonatal lethal phenotype when expressed in transgenic mice provides a window into the normal function of PrPC and how it can be corrupted to produce neurotoxic effects. We report here the surprising and unexpected observation that cells expressing Δ105–125 PrP and related mutants are hypersensitive to the toxic effects of two classes of antibiotics (aminoglycosides and bleomycin analogues) that are commonly used for selection of stably transfected cell lines. This unusual phenomenon mimics several essential features of Δ105–125 PrP toxicity seen in transgenic mice, including rescue by co-expression of wild type PrP. Cells expressing Δ105–125 PrP are susceptible to drug toxicity within minutes, suggesting that the mutant protein enhances cellular accumulation of these cationic compounds. Our results establish a screenable cellular phenotype for the activity of neurotoxic forms of PrP, and they suggest possible mechanisms by which these molecules could produce their pathological effects in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号