首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   34篇
  553篇
  2022年   11篇
  2021年   17篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   12篇
  2016年   16篇
  2015年   24篇
  2014年   41篇
  2013年   36篇
  2012年   51篇
  2011年   35篇
  2010年   16篇
  2009年   23篇
  2008年   21篇
  2007年   24篇
  2006年   16篇
  2005年   9篇
  2004年   14篇
  2003年   16篇
  2002年   18篇
  2001年   9篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   8篇
  1993年   3篇
  1992年   3篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   8篇
  1983年   8篇
  1982年   2篇
  1981年   5篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1916年   1篇
  1899年   3篇
  1897年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
91.
Metabolic Engineering aims to improve the performance of biotechnological processes through rational manipulation rather than random mutagenesis of the organisms involved. Such a strategy can only succeed when a mathematical model of the target process is available. Simplifying assumptions are often needed to cope with the complexity of such models in an efficient way, and the choice of such assumptions often leads to models that fall within a certain structural template or formalism. The most popular formalisms can be grouped in two categories: power-law and linear-logarithmic. As optimization and analysis of a model strongly depends on its structure, most methods in Metabolic Engineering have been defined within a given formalism and never used in any other.In this work, the four most commonly used formalisms (two power-law and two linear-logarithmic) are placed in a common framework defined within Biochemical Systems Theory. This framework defines every model as matrix equations in terms of the same parameters, enabling the formulation of a common steady state analysis and providing means for translating models and methods from one formalism to another. Several Metabolic Engineering methods are analysed here and shown to be variants of a single equation. Particularly, two problem solving philosophies are compared: the application of the design equation and the solution of constrained optimization problems. Generalizing the design equation to all the formalisms shows it to be interchangeable with the direct solution of the rate law in matrix form. Furthermore, optimization approaches are concluded to be preferable since they speed the exploration of the feasible space, implement a better specification of the problem and exclude unrealistic results.Beyond consolidating existing knowledge and enabling comparison, the systematic approach adopted here can fill the gaps between the different methods and combine their strengths.  相似文献   
92.
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.  相似文献   
93.

Background

Modern RNA interference (RNAi) methodologies using small interfering RNA (siRNA) oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules.

Principal Findings

Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA) targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica β-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite.

Conclusions

Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.  相似文献   
94.
95.
Hydrogen sulfide is an endogenously generated molecule with many reported physiological functions. Although several biological targets have been proposed, the biochemical mechanisms by which it elicits activity are not established. Thus, in an effort to begin to delineate the fundamental biological chemistry of H2S, we have examined the reaction of H2S with oxidized thiols and thiol proteins in order to determine whether persulfide formation occurs, is stable and how this may affect protein function. We have found that persulfides are easily generated, relatively stable and can alter enzyme activity. Moreover, we have begun to develop methodology for in situ generation of persulfides to facilitate further study of this potentially important species.  相似文献   
96.
Diet-induced obesity (DIO) and insulin resistance in mice are associated with proteinuria, renal mesangial expansion, accumulation of extracellular matrix proteins, and activation of oxidative stress, proinflammatory cytokines, profibrotic growth factors, and the sterol regulatory element binding proteins, SREBP-1 and SREBP-2, that mediate increases in fatty acid and cholesterol synthesis. The purpose of the present study was to determine whether treatment of DIO mice with the vitamin D receptor (VDR) agonist doxercalciferol (1α-hydroxyvitamin D2) prevents renal disease. Our results indicate that treatment of DIO mice with the VDR agonist decreases proteinuria, podocyte injury, mesangial expansion, and extracellular matrix protein accumulation. The VDR agonist also decreases macrophage infiltration, oxidative stress, proinflammatory cytokines, and profibrotic growth factors. Furthermore, the VDR agonist also prevents the activation of the renin-angiotensin-aldosterone system including the angiotensin II type 1 receptor and the mineralocorticoid receptor. An additional novel finding of our study is that activation of VDR results in decreased accumulation of neutral lipids (triglycerides and cholesterol) and expression of adipophilin in the kidney by decreasing SREBP-1 and SREBP-2 expression and target enzymes that mediate fatty acid and cholesterol synthesis and increasing expression of the farnesoid X receptor. This study therefore demonstrates multiple novel effects of VDR activation in the kidney which prevent renal manifestations of DIO in the kidney.  相似文献   
97.
The rapid induction of type I interferon (IFN) is essential for establishing innate antiviral responses. During infection, cytoplasmic viral RNA is sensed by two DExD/H box RNA helicases, RIG-I and MDA5, ultimately driving IFN production. Here, we demonstrate that purified genomic RNA from HIV-1 induces a RIG-I-dependent type I IFN response. Both the dimeric and monomeric forms of HIV-1 were sensed by RIG-I, but not MDA5, with monomeric RNA, usually found in defective HIV-1 particles, acting as a better inducer of IFN than dimeric RNA. However, despite the presence of HIV-1 RNA in the de novo infection of monocyte-derived macrophages, HIV-1 replication did not lead to a substantial induction of IFN signaling. We demonstrate the existence of an evasion mechanism based on the inhibition of the RIG-I sensor through the action of the HIV-1 protease (PR). Indeed, the ectopic expression of PR resulted in the inhibition of IFN regulatory factor 3 (IRF-3) phosphorylation and decreased expression of IFN and interferon-stimulated genes. A downregulation of cytoplasmic RIG-I levels occurred in cells undergoing a single-cycle infection with wild-type provirus BH10 but not in cells transfected with a protease-deficient provirus, BH10-PR(-). Cellular fractionation and confocal microscopy studies revealed that RIG-I translocated from the cytosol to an insoluble fraction during the de novo HIV-1 infection of monocyte-derived macrophages, in the presence of PR. The loss of cytoplasmic RIG-I was prevented by the lysosomal inhibitor E64, suggesting that PR targets RIG-I to the lysosomes. This study reveals a novel PR-dependent mechanism employed by HIV-1 to counteract the early IFN response to viral RNA in infected cells.  相似文献   
98.
The mechanism by which viral RNA-dependent RNA polymerases (RdRp) specifically amplify viral genomes is still unclear. In the case of flaviviruses, a model has been proposed that involves the recognition of an RNA element present at the viral 5' untranslated region, stem-loop A (SLA), that serves as a promoter for NS5 polymerase binding and activity. Here, we investigated requirements for specific promoter-dependent RNA synthesis of the dengue virus NS5 protein. Using mutated purified NS5 recombinant proteins and infectious viral RNAs, we analyzed the requirement of specific amino acids of the RdRp domain on polymerase activity and viral replication. A battery of 19 mutants was designed and analyzed. By measuring polymerase activity using nonspecific poly(rC) templates or specific viral RNA molecules, we identified four mutants with impaired polymerase activity. Viral full-length RNAs carrying these mutations were found to be unable to replicate in cell culture. Interestingly, one recombinant NS5 protein carrying the mutations K456A and K457A located in the F1 motif lacked RNA synthesis dependent on the SLA promoter but displayed high activity using a poly(rC) template. Promoter RNA binding of this NS5 mutant was unaffected while de novo RNA synthesis was abolished. Furthermore, the mutant maintained RNA elongation activity, indicating a role of the F1 region in promoter-dependent initiation. In addition, four NS5 mutants were selected to have polymerase activity in the recombinant protein but delayed or impaired virus replication when introduced into an infectious clone, suggesting a role of these amino acids in other functions of NS5. This work provides new molecular insights on the specific RNA synthesis activity of the dengue virus NS5 polymerase.  相似文献   
99.
The distribution of the tick Ixodes uriae is studied in the South Shetlands and different locations along the Antarctic Peninsula. Ticks were found beneath stones close to penguin rookeries of chinstrap, gentoo and adelie penguin, although no individuals were found parasitized. Our results showed that ticks are not distributed evenly along the Antarctic Peninsula being more common and abundant in the northern part with relative abundances of ticks ranging from 1 to 57 individuals per stone and from 2 to 26% of the stone inspected. Ticks are probably absent in the south.  相似文献   
100.
The objective of this study was to evaluate the effects of six activating solutions on duration of sperm motility, fertilization rate (FR), and hatching rate (HR) of Prochilodus lineatus (Valenciennes, 1837). The activating solutions (SA) used were: SA0 (199 mOsm kg?1, pH 8.5), SA1 (138 mOsm kg?1, pH 7.5), SA2 (256 mOsm kg?1, pH 7.5), SA3 (131 mOsm kg?1, pH 10), NaCl (92 mOsm kg?1, pH 7.5) and distilled water (32 mOsm kg?1, pH 7.5). SA1 induced the highest motility, FR and HR, compared with the other activating solutions. The lowest motility was obtained with SA0, with no fertilization or hatching, whereas motility was zero with SA2 and SA3. It is possible to conclude that the solution SA1 can be used for the activation of gametes during fertilization in induced reproduction of curimba to achieve higher fertilization and hatching rates. Thus, it was found that the osmolality and pH of activating solutions, probably with the participation of dissolved substances therein, are the main factors acting on semen motility after activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号